Vital Sign Monitor Device Equipped with a Telegram Notifications Based on Internet of Thing Platform

  • Agatha Putri Juniar Putri Juniar Santoso Departement of electromedical engineering,Poltekkes Kemenkes Surabaya
  • Sari Luthfiyah Departement of electromedical engineering,Poltekkes Kemenkes Surabaya
  • Tri Bowo Indrato
  • Michelle Omoogun Middlesex University (Mauritius Campus Branch), Vacoas, Mauritius
Keywords: Vital Sign Monitor, Temperature, Respiration Rate, IoT, ESP32 Microcontroller

Abstract

Vital Sign Monitor is a tool used to diagnose a patient who needs intensive care to know the condition of the patient. Parameters used in monitoring the patient's condition include body temperature and respiration. The contribution of this research designed a vital sign monitoring tool with IoT-based notifications so that remote monitoring can be done by utilizing web Thinger.io, LCD, RGB LEDs as a display of the results of the study and notify telegrams if it becomes abnormal to the patient's condition. Therefore, in order to produce accurate data in the process of data retrieval, a relaxed position of the patient is required and the stability of the wi-fi network so that monitoring is not hampered. The study used the DS18B20 digital temperature sensor placed on the axilla and the piezoelectric sensor placed on the abdomen of the patient. The results of the study were obtained by taking data on patients. The resulting temperature value will be compared to the thermometer, which produces the highest error value of 0.56%, which is still possible because the tolerance limit is 1oC. and for the collection of respiration values that have been compared to the patient monitor obtained the highest error value of 6.2%, which is still feasible because the tolerance limit is 10%. In this study, there is often a crash library between the temperature sensor and other sensors, so for further research, recommend to replacing the temperature sensor

Downloads

Download data is not yet available.

References

N. V. Wardhani et al., "A Portable Vital Sign Device with Liquid Crystal Display TFT Touchscreen," Proc. - 2019 Int. Semin. Appl. Technol. Inf. Commun. Ind. 4.0 Retrosp. Prospect. Challenges, iSemantic 2019, pp. 429–433, 2019, doi: 10.1109/ISEMANTIC.2019.8884351.

M. Omoogun, V. Ramsurrun, S. Guness, P. Seeam, X. Bellekens, and A. Seeam, "Critical patient eHealth monitoring system using wearable sensors," 2017 1st Int. Conf. Next Gener. Comput. Appl. NextComp 2017, no. July, pp. 169–174, 2017, doi: 10.1109/NEXTCOMP.2017.8016194.

A. Singh and A. Chaudhary, "International Journal on Recent and Innovation Trends in Computing and Communication Real Time Respiration Rate Measurement Using Temperature Sensor," pp. 605–607, 2017, [Online]. Available: http://www.ijritcc.org.

B. Mash, “Primary care management of the coronavirus (Covid-19),” South African Fam. Pract., vol. 62, no. 1, pp. 1–4, 2020, doi: 10.4102/safp.v62i1.5115.

T. Mikami et al., "Risk Factors for Mortality in Patients with COVID-19 in New York City," J. Gen. Intern. Med., vol. 36, no. 1, pp. 17–26, 2021, doi: 10.1007/s11606-020-05983-z.

W. J. Wiersinga, A. Rhodes, A. C. Cheng, S. J. Peacock, and H. C. Prescott, "Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review," JAMA - J. Am. Med. Assoc., vol. 324, no. 8, pp. 782–793, 2020, doi: 10.1001/jama.2020.12839.

I. Prayogo et al., “Sistem Monitoring Denyut Jantung Dan Suhu Tubuh Sebagai Indikator Level Kesehatan Pasien Berbasis IoT ( Internet Of Thing ) Dengan Metode Fuzzy Logic Menggunakan Android,” Program Studi Teknik Elektro, Fakultas Teknik, Universitas Trunojoyo. 2017.

G. Basaranoglu, M. Bakan, T. Umutoglu, S. U. Zengin, K. Idin, and Z. Salihoglu, "Comparison of SpO2 values from different fingers of the hands," Springerplus, vol. 4, no. 1, pp. 2–5, 2015, doi: 10.1186/s40064-015-1360-5.

J. Saha et al., "Advanced IOT based combined remote health monitoring, home automation and alarm system," 2018 IEEE 8th Annu. Comput. Commun. Work. Conf. CCWC 2018, vol. 2018-Janua, no. September, pp. 602–606, 2018, doi: 10.1109/CCWC.2018.8301659.

A. Zafia, “Prototype Alat Monitoring Vital Sign Pasien Rawat Inap Menggunakan Wireless Sensor Sebagai Upaya Physical Distancing menghadapi Covid-19,” J. Informatics, Inf. Syst. Softw. Eng. Appl., vol. 2, no. 2, pp. 61–68, 2020, doi: 10.20895/inista.v2i2.126.

A. M. Dondorp, M. Hayat, D. Aryal, A. Beane, and M. J. Schultz, "Respiratory support in COVID-19 patients, with a focus on resource-limited settings," Am. J. Trop. Med. Hyg., vol. 102, no. 6, pp. 1191–1197, 2020, doi: 10.4269/ajtmh.20-0283.

T. Greenhalgh, G. C. H. Koh, and J. Car, "Covid-19: A remote assessment in primary care," BMJ, vol. 368, pp. 1–5, 2020, doi: 10.1136/bmj.m1182.

N. D. Putu Anggi Trisna, H. Andjar Pudji, and dan T. Moch Prastawa Assalim, “Seminar Tugas Akhir Rancang Bangun Alat Ukur Pemeriksaan Vital Signs Tampil PC ( Respirasi & Heart Rate),” pp. 1–10, 2018.

Q. Sun, H. Qiu, M. Huang, and Y. Yang, "Lower mortality of COVID-19 by early recognition and intervention: experience from Jiangsu Province," Ann. Intensive Care, vol. 10, no. 1, pp. 2–5, 2020, doi: 10.1186/s13613-020-00650-2.

K. G. Andersen, A. Rambaut, W. I. Lipkin, E. C. Holmes, and R. F. Garry, "The proximal origin of SARS-CoV-2," Nat. Med., vol. 26, no. 4, pp. 450–452, 2020, doi: 10.1038/s41591-020-0820-9.

W. Sonata and W. -, “Rancang Bangun Alat Ukur Laju Pernapasan Manusia Berbasis Mikrokontroler Atmega8535,” J. Fis. Unand, vol. 4, no. 4, pp. 332–338, 2015.

M. Al-Balas, H. I. Al-Balas, and H. Al-Balas, "Surgery during the COVID-19 pandemic: A comprehensive overview and perioperative care," Am. J. Surg., vol. 219, no. 6, pp. 903–906, 2020, doi: 10.1016/j.amjsurg.2020.04.018.

M. A. Matthay, J. M. Aldrich, and J. E. Gotts, "Treatment for severe acute respiratory distress syndrome from COVID-19," Lancet Respir. Med., vol. 8, no. 5, pp. 433–434, 2020, doi: 10.1016/S2213-2600(20)30127-2.

D. G. Kristiani, T. Triwiyanto, P. C. Nugraha, B. G. Irianto, Syaifudin, and D. Titisari, "The Measuring of Vital Signs Using Internet of Things Technology (Heart Rate and Respiration)," Proc. - 2019 Int. Semin. Appl. Technol. Inf. Commun. Ind. 4.0 Retrosp. Prospect. Challenges, iSemantic 2019, pp. 417–422, 2019, doi: 10.1109/ISEMANTIC.2019.8884312.

S. N. Byrareddy and M. Mohan, "SARS-CoV2 induced respiratory distress: Can cannabinoids be added to anti-viral therapies to reduce lung inflammation?," Brain. Behav. Immun., vol. 87, pp. 120–121, 2020, doi: 10.1016/j.bbi.2020.04.079.

Istikomah, “No 主観的健康感を中心とした在宅高齢者における 健康関連指標に関する共分散構造分析Title,” 2014.

H. N. Amalina, I. D. Gede, H. Wisana, and T. Rahmawati, “Monitoring Respiratory Rate and Spo2 Via Android ( Parameter Respiratory Rate ),” vol. 1, no. 1, pp. 1–7, 2019, doi: 10.1234/ijeeemi.v1i1.9xx.

I. K. E. G. Mahardika, T. Hamzah, T. Rahmawati, and L. Soetjiatie, “Measuring Respiration Rate Based Android,” Indones. J. Electron. Electromed. Eng. Med. informatics, vol. 1, no. 1, pp. 39–44, 2019, doi: 10.35882/ijeeemi.v1i1.7.

Sarah Aghnia Miyagi, Muhammad Ridha Mak'ruf, Endang Dian Setioningsih, and T. Das, "Design of Respiration Rate Meter Using Flexible Sensor," J. Electron. Electromed. Eng. Med. Informatics, vol. 2, no. 1, pp. 13–18, 2020, doi: 10.35882/jeeemi.v2i1.3.

A. D. Droitcour et al., "Non-contact respiratory rate measurement validation for hospitalized patients," Proc. 31st Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. Eng. Futur. Biomed. EMBC 2009, pp. 4812–4815, 2009, doi: 10.1109/IEMBS.2009.5332635.

Published
2021-08-28
How to Cite
[1]
A. P. J. Santoso, S. Luthfiyah, T. Indrato, and M. Omoogun, “Vital Sign Monitor Device Equipped with a Telegram Notifications Based on Internet of Thing Platform”, ijeeemi, vol. 3, no. 3, pp. 108-113, Aug. 2021.
Section
Articles