Design and Development of Flow Analyzer for Peak Inspiratory Flow (PIF) and Peak Expiratory Flow (PEF) Parameters.

  • Andri Lazuardi Wahyu Pambudi Department of Electromedical Engineering Technology, Poltekkes Kemenkes Surabaya
  • Endro Yulianto Department of Electromedical Engineering, Poltekkes Kemenkes Surabaya, Jl. Pucang Jajar Timur No. 10, Surabaya, 60245, Indonesia https://orcid.org/0000-0002-8094-5359
  • Levana Forra Wakidi Department of Electromedical Engineering, Poltekkes Kemenkes Surabaya, Jl. Pucang Jajar Timur No. 10, Surabaya, 60245, Indonesia https://orcid.org/0000-0002-4092-4019

Abstract

The PIF and PEF parameters on the ventilator need to be taken into account to monitor the condition of patients undergoing mechanical ventilation. Both of these parameters need to undergo periodic testing to ensure that the ventilator can provide accurate information to its users. The testing of these two parameters can be conducted using a flow analyzer. The objective of this research is to develop a flow analyzer for PIF and PEF parameters using the AFM3000 flow sensor, with the results displayed on an LCD TFT screen in the form of graphs and numerical values. The research measurements were conducted in Volume Control (VC) mode with VT settings of 200, 300, 400, 500, and 600 mL. Data collection was done using two methods to obtain two different types of data. From the first data collection, the largest errors in reading PIF and PEF values were found to be 3.49% and 2.99%, respectively. The second data collection resulted in a sensor's change in reading constant flow of ±0.1 LPM. Overall, the research findings indicate that the AFM3000 sensor has good accuracy and stability. Additionally, the AFM3000 flow sensor has good sensitivity and very short delay, making it suitable for real-time graph display in the module.

Downloads

Download data is not yet available.

References

A. Bakhtiar and W. S. Amran, “Faal Paru Statis,” J. Respirasi, vol. 2, no. 3, p. 91, 2019, doi: 10.20473/jr.v2-i.3.2016.91-98.

J. Jordanoglou and N. B. Pride, “Factors determining maximum inspiratory flow and maximum expiratory flow of the lung.,” Thorax, vol. 23, no. 1, pp. 33–37, 1968, doi: 10.1136/thx.23.1.33.

R. L. Read, L. Clarke, and G. Mulligan, “VentMon: An open source inline ventilator tester and monitor,” HardwareX, vol. 9, p. e00195, 2021, doi: 10.1016/j.ohx.2021.e00195.

P. Zhang, J. Sun, G. Wan, and W. Liu, “Development of Ventilator Tester Calibration Equipment,” IET Conf. Publ., vol. 2015, no. CP680, 2015, doi: 10.1049/cp.2015.0790.

B. M. Ciurea, S. Kostrakievici, and M. I. Nistor, “Inspiratory and expiratory flow rates determination using a single spirolog type flow sensor,” 2013 E-Health Bioeng. Conf. EHB 2013, pp. 5–8, 2013, doi: 10.1109/EHB.2013.6707240.

M. S. Holmes, J. Seheult, C. Geraghty, S. D’Arcy, R. W. Costello, and R. B. Reilly, “Using acoustics to estimate inspiratory flow rate and drug removed from a dry powder inhaler,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, pp. 6866–6869, 2013, doi: 10.1109/EMBC.2013.6611135.

T. E. Taylor, M. S. Holmes, I. Sulaiman, R. W. Costello, and R. B. Reilly, “Influences of gender and anthropometric features on inspiratory inhaler acoustics and peak inspiratory flow rate,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, vol. 2015-November, pp. 2227–2230, 2015, doi: 10.1109/EMBC.2015.7318834.

J. Haughney, A. J. Lee, E. McKnight, I. Pertsovskaya, M. O’Driscoll, and O. S. Usmani, “Peak Inspiratory Flow Measured at Different Inhaler Resistances in Patients with Asthma,” J. Allergy Clin. Immunol. Pract., vol. 9, no. 2, pp. 890–896, 2021, doi: 10.1016/j.jaip.2020.09.026.

M. A. Warner and B. Patel, Mechanical Ventilation, Third Edit. Elsevier Inc., 2013.

D. A. Mahler and D. M. G. Halpin, “Peak Inspiratory Flow as a Predictive Therapeutic Biomarker in COPD,” Chest, vol. 160, no. 2, pp. 491–498, 2021, doi: 10.1016/j.chest.2021.03.049.

P. Weiner and M. Weiner, “Inspiratory muscle training may increase peak inspiratory flow in chronic obstructive pulmonary disease,” Respiration, vol. 73, no. 2, pp. 151–156, 2006, doi: 10.1159/000088095.

S. Ghosh, J. A. Ohar, and M. B. Drummond, “Peak Inspiratory Flow Rate in Chronic Obstructive Pulmonary Disease: Implications for Dry Powder Inhalers,” J. Aerosol Med. Pulm. Drug Deliv., vol. 30, no. 6, pp. 381–387, 2017, doi: 10.1089/jamp.2017.1416.

S. Natarajan, J. Castner, and A. H. Titus, “Smart phone compatible peak expiratory flow meter,” 2014 IEEE Healthc. Innov. Conf. HIC 2014, pp. 141–144, 2014, doi: 10.1109/HIC.2014.7038894.

W. Janssens et al., “Inspiratory flow rates at different levels of resistance in elderly COPD patients,” Eur. Respir. J., vol. 31, no. 1, pp. 78–83, 2008, doi: 10.1183/09031936.00024807.

E. Wilder-Smith, L. Liu, K. T. M. Ma, and B. K. C. Ong, “Relationship of inspiratory flow rate and volume on digit tip skin and ulnar artery vasoconstrictor responses in healthy adults,” Microvasc. Res., vol. 69, no. 1–2, pp. 95–100, 2005, doi: 10.1016/j.mvr.2005.01.003.

G. Chen, I. De La Cruz, and E. Rodriguez-Villegas, “Automatic lung tidal volumes estimation from tracheal sounds,” 2014 36th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBC 2014, vol. m, pp. 1497–1500, 2014, doi: 10.1109/EMBC.2014.6943885.

S. Butt et al., “Initial setting of high-flow nasal oxygen post extubation based on mean inspiratory flow during a spontaneous breathing trial,” J. Crit. Care, vol. 63, pp. 40–44, 2021, doi: 10.1016/j.jcrc.2020.12.022.

Y. Maeda, Y. Fujino, A. Uchiyama, N. Matsuura, T. Mashimo, and M. Nishimura, “Effects of peak inspiratory flow on development of ventilator-induced lung injury in rabbits,” Anesthesiology, vol. 101, no. 3, pp. 722–728, 2004, doi: 10.1097/00000542-200409000-00021.

I. Standards and B. Society, Part 10418 : Device specialization — International Normalized Ratio ( INR ) monitor IEEE Engineering in Medicine and Biology Society Sponsored by the, no. November. 2011.

L. S. Guimaraes, R. A. Rocha, I. Teixeira, A. C. D. Faria, and P. L. Melo, “Detection of expiratory flow limitation by evaluating the spontaneous flow pattern,” Pan Am. Heal. Care Exch. PAHCE 2011 - Conf. Work. Exhib. Coop. / Linkages An Indep. Forum Patient Care Technol. Support, vol. 175, p. 48, 2011, doi: 10.1109/PAHCE.2011.5871844.

M. J. . D. K. P. J. S. S. Edmunds, Jordan L.; Bustamante, “LOW-COST DIFFERENTIAL PRESSURE SPIROMETRY FOR EMERGENCY VENTILATOR TIDAL VOLUME SENSING,” Dict. Genomics, Transcr. Proteomics, vol. c, pp. 1–1, 2015, doi: 10.1002/9783527678679.dg03065.

M. Farooqui et al., “A Non-invasive device and automated monitoring system using peak flow meter for asthma patients,” ICCAIS 2020 - 3rd Int. Conf. Comput. Appl. Inf. Secur., 2020, doi: 10.1109/ICCAIS48893.2020.9096881.

S. Wang, Z. Gaing, R. Garcia, P. Chang, and C. Chen, “A self-power peak expiratory flow meter,” ICOT 2013 - 1st Int. Conf. Orange Technol., pp. 172–176, 2013, doi: 10.1109/ICOT.2013.6521185.

D. Kim, S. Cho, L. Tamil, D. J. Song, and S. Seo, “Predicting asthma attacks: Effects of indoor PM concentrations on peak expiratory flow rates of asthmatic children,” IEEE Access, vol. 8, pp. 8791–8797, 2020, doi: 10.1109/ACCESS.2019.2960551.

Y. Orbe, D. Alulema, R. D. Trivino, A. V. Guaman, and V. Andres Arcentales, “Design of a mHealth device for Peak Expiratory Flow Measurement,” 2020 Ieee Andescon, Andescon 2020, 2020, doi: 10.1109/ANDESCON50619.2020.9272140.

T. Abuzairi, A. Irfan, and Basari, “COVENT-Tester: A low-cost, open source ventilator tester,” HardwareX, vol. 9, p. e00196, 2021, doi: 10.1016/j.ohx.2021.e00196.

P. K. Olla and W. Azhar, “Rancang Bangun Peak Flow Meter dengan Output Suara Berbasis Android,” Avitec, vol. 3, no. 1, pp. 43–56, 2021, doi: 10.28989/avitec.v3i1.884

Published
2023-08-29
How to Cite
[1]
A. L. Wahyu Pambudi, E. Yulianto, and L. F. Wakidi, “Design and Development of Flow Analyzer for Peak Inspiratory Flow (PIF) and Peak Expiratory Flow (PEF) Parameters.”, Indones.J.electronic.electromed.med.inf, vol. 5, no. 3, pp. 175-180, Aug. 2023.
Section
Research Article