Spo2 Analysis on Development of IoT-Based Lung Function and Spo2 Measuring Device

  • Nadya Shavira Department of Electromedical Engineering Technology, Poltekkes Kemenkes Surabaya
  • Her Gumiwang Ariswati Department of Electromedical Engineering, Poltekkes Kemenkes Surabaya, Surabaya, Indonesia
  • Torib Hamzah Department of Electromedical Engineering, Poltekkes Kemenkes Surabaya, Surabaya, Indonesia
Keywords: Oxymetry, MAX30102, SPO2, BPM. Kodular.


Pulmonary dysfunction is a widespread issue, particularly in developing nations. It encompasses restrictive, obstructive, and mixed pulmonary function disorders that lead to a decrease in vital lung capacity, an increase in functional residual capacity, and a decline in blood oxygen concentration and saturation. This study aims to combine oximetry and spirometry into a single device, using the Internet of Things (IoT) technology to display results via a smartphone app. The focus is on analyzing oxygen saturation, with normal levels ranging from 96% to 100% in adults, alongside a heart rate of 60-100 beats per minute. The MAX30102 sensor measures oxygen saturation, and the Arduino Pro Mini and D1 Mini ESP32 microcontrollers process data. The Android-based app, developed using Kodular platform, integrates a MySQL database and connects to the device module via Wi-Fi. Ten respondents underwent five measurements, revealing an average error of ±0.88% for oxygen saturation (SpO2) and ±2.82% for heart rate measurements. The average data loss rate during transmission was ±0.66% for SpO2 and ±0.89% for heart rate. These findings highlight existing errors in the module. The research aims to facilitate remote health monitoring for healthcare professionals, improving accessibility and healthcare provision.


Download data is not yet available.


F. Kubaski et al., “Non-invasive pulmonary function test on Morquio patients,” Mol. Genet. Metab., vol. 115, no. 4, pp. 186–192, 2015, doi: 10.1016/j.ymgme.2015.06.007.

Lia andriani, Priyambada Cahya Nugraha, and Sari Lutfiah, “Portable Spirometer for Measuring Lung Function Health (FVC and FEV1),” J. Electron. Electromed. Eng. Med. Informatics, vol. 1, no. 1, pp. 16–20, 2019, doi: 10.35882/jeeemi.v1i1.4.

L. M. Li Kharis, A. Pudji, and P. C. Nugraha, “Development Portable Spirometer using MPXV7002DP Sensor and TFT Display for Lung Disease Detection.,” Indones. J. Electron. Electromed. Eng. Med. informatics, vol. 2, no. 3, pp. 122–129, 2020, doi: 10.35882/ijeeemi.v2i3.3.

Y. Y. Richa Rachmawati, Y. P. Ayu Sanjaya, and S. Edilia, “Web-Based Temperature, Oxygen Saturation, and Heart Rate Monitoring System,” IAIC Trans. Sustain. Digit. Innov., vol. 4, no. 1, pp. 38–45, 2022, doi: 10.34306/itsdi.v4i1.567.

A. Hazarika et al., “Pulmonary Function, Mental and Physical Health in Recovered COVID-19 Patients Requiring Invasive Versus Non-invasive Oxygen Therapy: A Prospective Follow-Up Study Post-ICU Discharge,” Cureus, vol. 13, no. 9, pp. 1–12, 2021, doi: 10.7759/cureus.17756.

S. Garcia-Gutierrez et al., “The use of pulse oximetry to determine hypoxemia in acute exacerbations of COPD,” COPD J. Chronic Obstr. Pulm. Dis., vol. 12, no. 6, pp. 613–620, 2015, doi: 10.3109/15412555.2014.995291.

R. Sameh, M. Genedy, A. Abdeldayem, and M. H. Abdel Azeem, “Design and Implementation of an SPO2 Based Sensor for Heart Monitoring Using an Android Application,” J. Phys. Conf. Ser., vol. 1447, no. 1, 2020, doi: 10.1088/1742-6596/1447/1/012004.

R. T. Murthy, “A Review on Design and Development of IoT Based Pulse Oximeter,” J. Res. Proc. JRP Publ., vol. 1, no. 2, pp. 1–5, 2021, [Online]. Available: www.i-jrp.com.

P. U and H. P. Kumar, “Multi-Patient Health Monitoring Using Arduino Mega,” Iarjset, vol. 8, no. 9, pp. 12–22, 2021, doi: 10.17148/iarjset.2021.8903.

A. N. Costrada, A. G. Arifah, I. D. Putri, I. K. A. Sara Sawita, H. Harmadi, and M. Djamal, “Design of Heart Rate, Oxygen Saturation, and Temperature Monitoring System for Covid-19 Patient Based on Internet of Things (IoT),” J. Ilmu Fis. | Univ. Andalas, vol. 14, no. 1, pp. 54–63, 2022, doi: 10.25077/jif.14.1.54-63.2022.

P. Wal, A. Wal, N. Verma, R. Karunakakaran, and A. Kapoor, “Internet of Medical Things – The Future of Healthcare,” Open Public Health J., vol. 15, no. 1, pp. 1–9, 2022, doi: 10.2174/18749445-v15-e221215-2022-142.

A. Ariyanto, Y. Wijayanti, and A. Yuniastuti, “An Analysis of Vital Pulmonary Capacity, Haemoglobin Levels and Oxygen Saturation in Conventional Electrical Smokers,” Public Heal. Perspect. J., vol. 3, no. 3, pp. 185–194, 2018, [Online]. Available: http://journal.unnes.ac.id/sju/index.php/phpj.

V. K. A., S. S. K., and S. Reddy, “Importance of spirometry, pulse oximetry and hematocrit in chronic obstructive pulmonary disease,” Int. J. Adv. Med., vol. 6, no. 3, p. 917, 2019, doi: 10.18203/2349-3933.ijam20192264.

I Putu Anna Andika, Triana Rahmawati, and M. Ridha Mak’ruf, “Pulse Oximeter Portable,” J. Electron. Electromed. Eng. Med. Informatics, vol. 1, no. 1, pp. 28–32, 2019, doi: 10.35882/jeeemi.v1i1.6.

A. Chowdhary, G. Gomare, and S. K. Jindal, “IoT based Wearable Health Monitoring System for COVID-19 Patients,” CEUR Workshop Proc., vol. 3142, pp. 1–10, 2022.

M. Z. Dini, A. Rakhmatsyah, and A. A. Wardana, “Detection of Oxygen Levels (SpO2) and Heart Rate Using a Pulse Oximeter for Classification of Hypoxemia Based on Fuzzy Logic,” J. Ilm. Tek. Elektro Komput. dan Inform., vol. 8, no. 1, p. 17, 2022, doi: 10.26555/jiteki.v8i1.22139.

S. Ajith, K. Praveen, S. I. I, and M. Nagaraj, “Wireless Monitoring of Patients By Iot Through Pulse- Ox & Heart Rate Sensor,” Int. J. Pure Appl. Math., vol. 119, no. 15, pp. 973–979, 2018.

P. D. Prasetyo Adi and A. Kitagawa, “A study of LoRa performance in monitoring of patient’s SPO2 and heart rate based IoT,” Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 2, pp. 238–251, 2020, doi: 10.14569/ijacsa.2020.0110232.

M. R. Syarlisjiswan, Sukarmin, and D. Wahyuningsih, “The development of e-modules using Kodular software with problem-based learning models in momentum and impulse material,” IOP Conf. Ser. Earth Environ. Sci., vol. 1796, no. 1, 2021, doi: 10.1088/1742-6596/1796/1/012078.

B. Rawat, S. Purnama, and M. Mulyati, “MySQL Database Management System (DBMS) On FTP Site LAPAN Bandung,” Int. J. Cyber IT Serv. Manag., vol. 1, no. 2, pp. 173–179, 2021, doi: 10.34306/ijcitsm.v1i2.47.

A. Panahi, A. Hassanzadeh, and A. Moulavi, “Design of a low cost, double triangle, piezoelectric sensor for respiratory monitoring applications,” Sens. Bio-Sensing Res., vol. 30, no. October, 2020, doi: 10.1016/j.sbsr.2020.100378.

C. Hasanudin, A. Fitrianingsih, D. N. P. Utomo, and M. A. R. Baihaqi, “Strategies to Create Digital Learning Materials of Early Reading for Elementary School Students Using Kodular,” Int. Conf. Educ. Innov. Soc. Sci., pp. 34–47, 2022.

A. C. Bento, “An Experimental Survey with NodeMCU12e+Shield with Tft Nextion and MAX30102 Sensor,” 11th Annu. IEEE Inf. Technol. Electron. Mob. Commun. Conf. IEMCON 2020, pp. 82–86, 2020, doi: 10.1109/IEMCON51383.2020.9284870.

C. T. S. Yin and R. Dhakshyani, “Ai-Powered Low-Cost Wearable Health Tracker Targeted Towards Elderly in Developing Countries,” J. Eng. Sci. Technol., vol. 17, pp. 58–76, 2022.

H. A. Mumtahana, “Optimization of Transaction Database Design with MySQL and MongoDB,” SinkrOn, vol. 7, no. 3, pp. 883–890, 2022, doi: 10.33395/sinkron.v7i3.11528.

How to Cite
N. Shavira, H. G. Ariswati, and T. Hamzah, “Spo2 Analysis on Development of IoT-Based Lung Function and Spo2 Measuring Device”, Indones.J.electronic.electromed.med.inf, vol. 6, no. 1, pp. 25-33, Feb. 2024.
Research Article