ECG and NIBP Simulators in One Device Display on TFT Nextion

  • Cantika Melinda Department of Electromedical Engineering Technology, Poltekkes Kemenkes Surabaya
  • I Dewa Gede Hari Wisana Department of Electromedical Engineering, Poltekkes Kemenkes Surabaya, Jl. Pucang Jajar Timur No. 10, Surabaya, 60245, Indonesia
  • Andjar Pudji Department of Electromedical Engineering, Poltekkes Kemenkes Surabaya, Jl. Pucang Jajar Timur No. 10, Surabaya, 60245, Indonesia
  • Triwiyanto Triwiyanto Department of Electromedical Engineering, Poltekkes Kemenkes Surabaya, Jl. Pucang Jajar Timur No. 10, Surabaya, 60245, Indonesia
Keywords: Calibration, Vital Sign Monitor, NIBP, MPX5050GP


Accurate monitoring of NIBP (Non-Invasive Blood Pressure) parameters using vital sign monitors is crucial for patient care. Therefore, calibration of vital sign monitors is essential to ensure their safety and reliability. The purpose of this study is a vital sign simulator was developed, integrating ECG and NIBP parameters with a TFT Nextion display, to calibrate ECG and NIBP readings on vital sign monitors. The system utilized the Arduino Mega 2560 as the central controller and the MPX5050GP sensor for NIBP measurement and motor pump control. The NIBP parameters were measured at two settings: 60/30 and 80/50. The results showed a maximum systolic error of 3.5% and a diastolic error of 5.6% for the NIBP setting of 80/50. The largest standard deviation value of 2.05 was observed at the NIBP setting of 60/30. The highest uncertainty value of 0.5 was also found in the NIBP 60/30 setting. The obtained data indicated stable module readings within the acceptable threshold for vital sign monitor calibration. The developed vital sign simulator offers a reliable means of calibrating NIBP parameters, enabling accurate blood pressure measurements. Further research and refinement can be conducted to enhance the system's precision and expand its capabilities for calibration of additional vital sign parameters. By ensuring accurate calibration, healthcare professionals can rely on vital sign monitors for effective patient monitoring and diagnosis.


Download data is not yet available.


Y. Ostchega, C. D. Fryar, T. Nwankwo, and D. T. Nguyen, “Hypertension Prevalence Among Adults Aged 18 and Over: United States, 2017-2018,” NCHS Data Brief, no. 364, pp. 1–8, 2020.

R. Agarwal et al., “Chlorthalidone for Hypertension in Advanced Chronic Kidney Disease,” N. Engl. J. Med., vol. 385, no. 27, pp. 2507–2519, 2021, doi: 10.1056/nejmoa2110730.

S. Palomo-Piñón et al., “Prevalence and characterization of undiagnosed arterial hypertension in the eastern zone of Mexico,” J. Clin. Hypertens., vol. 24, no. 2, pp. 131–139, 2022, doi: 10.1111/jch.14414.

M. Kebe, R. Gadhafi, B. Mohammad, M. Sanduleanu, H. Saleh, and M. Al-qutayri, “Human vital signs detection methods and potential using radars: A review,” Sensors (Switzerland), vol. 20, no. 5, 2020, doi: 10.3390/s20051454.

I. J. Brekke, L. H. Puntervoll, P. B. Pedersen, J. Kellett, and M. Brabrand, “The value of vital sign trends in predicting and monitoring clinical deterioration: A systematic review,” PLoS One, vol. 14, no. 1, pp. 1–13, 2019, doi: 10.1371/journal.pone.0210875.

F. D. Fuchs and P. K. Whelton, “High Blood Pressure and Cardiovascular Disease,” Hypertension, no. Cvd, pp. 285–292, 2020, doi: 10.1161/HYPERTENSIONAHA.119.14240.

B. S. Alpert, D. Quinn, and D. Gallick, “Oscillometric blood pressure: A review for clinicians,” J. Am. Soc. Hypertens., vol. 8, no. 12, pp. 930–938, 2014, doi: 10.1016/j.jash.2014.08.014.

G. Gersak and J. Drnovsek, “Evaluation of non-invasive blood pressure simulators,” IFMBE Proc., vol. 16, no. 1, pp. 342–345, 2007, doi: 10.1007/978-3-540-73044-6_87.

M. A. Islam and M. Ahmad, “Design and implementation of non-invasive continuous blood pressure measurement and monitoring system using photoplethysmography,” ICECE 2018 - 10th Int. Conf. Electr. Comput. Eng., no. i, pp. 173–176, 2019, doi: 10.1109/ICECE.2018.8636725.

R. Raamat, J. Talts, K. Jagomägi, and J. Kivastik, “Accuracy of some algorithms to determine the oscillometric mean arterial pressure: A theoretical study,” Blood Press. Monit., vol. 18, no. 1, pp. 50–56, 2013, doi: 10.1097/MBP.0b013e32835d12f6.

U. Tholl, K. Forstner, and M. Anlauf, “Measuring blood pressure: Pitfalls and recommendations,” Nephrol. Dial. Transplant., vol. 19, no. 4, pp. 766–770, 2004, doi: 10.1093/ndt/gfg602.

M. Forouzanfar, H. R. Dajani, V. Z. Groza, M. Bolic, S. Rajan, and I. Batkin, “Oscillometric blood pressure estimation: Past, present, and future,” IEEE Rev. Biomed. Eng., vol. 8, no. c, pp. 44–63, 2015, doi: 10.1109/RBME.2015.2434215.

sugeng R, “Iso/Iec 17025 2005 Id,” Iso, pp. 1–38, 2006, [Online]. Available: papers3://publication/uuid/24BE9782-5E0A-4D38-ABDB-ECCECD24E8BC.

A. Groenewegen, F. H. Rutten, A. Mosterd, and A. W. Hoes, “Epidemiology of heart failure,” Eur. J. Heart Fail., vol. 22, no. 8, pp. 1342–1356, 2020, doi: 10.1002/ejhf.1858.

N. A. Santoso and F. Ughi, “To Simulate Oscillograph of Blood Pressure,” 2017 5th Int. Conf. Instrumentation, Commun. Inf. Technol. Biomed. Eng., no. November, pp. 1–5, 2017.

J. M. N. Narvaez and G. O. Avendaño, “Design and implementation of vital signs simulator for patient monitor,” J. Telecommun. Electron. Comput. Eng., vol. 9, no. 2–4, pp. 7–9, 2017.

A. DARWONGSO, F. UGHI, and S. W. HIDAYAT, “Blood Pressure Simulator: Minimizing the Effect of Inflation and Deflation Rates on Oscillation Simulations,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 7, no. 1, p. 165, 2019, doi: 10.26760/elkomika.v7i1.165.

W. Riedel, S. Mieke, R. Seemann, and B. Ittermann, “A simulator for oscillometric blood-pressure signals to test automated noninvasive sphygmomanometers,” Rev. Sci. Instrum., vol. 82, no. 2, 2011, doi: 10.1063/1.3549803.

E. Balestrieri and S. Rapuano, “Instruments and methods for calibration of oscillometric blood pressure measurement devices,” IEEE Trans. Instrum. Meas., vol. 59, no. 9, pp. 2391–2404, 2010, doi: 10.1109/TIM.2010.2050978.

N. Shahid, S. M. Omair, M. W. Munir, M. F. Shamim, and M. Z. Ul Haque, “Comparative Analysis and Accuracy of a Devised Automated Non Invasive Blood Pressure Monitor Based on Oscillometric Method,” Indian J. Sci. Technol., vol. 10, no. 3, 2017, doi: 10.17485/ijst/2017/v10i3/110618.

J. Kijonka and M. Penhaker, “Electronic invasive blood pressure simulator device for patient monitor testing,” Elektron. ir Elektrotechnika, vol. 122, no. 6, pp. 49–54, 2012, doi: 10.5755/j01.eee.122.6.1820.

G. Fahd et al., “Design of a secondary standard for measuring arterial blood pressure,” Meas. J. Int. Meas. Confed., vol. 45, no. 10, pp. 2490–2493, 2012, doi: 10.1016/j.measurement.2011.10.033.

A. Aditya, M. A. Riyadi, and D. Darjat, “Design of an Automatic Wrist Blood Pressure Gauge Using the Arduino Mega 2560 Based Oscillometry Method,” Transient J. Ilm. Tek. Elektro, vol. 5, no. 1, pp. 1–7, 2016, [Online]. Available:

E. Balestrieri, P. Daponte, and S. Rapuano, “Towards accurate NIBP simulators: Manufacturers’ and researchers’ contributions,” MeMeA 2013 - IEEE Int. Symp. Med. Meas. Appl. Proc., pp. 91–96, 2013, doi: 10.1109/MeMeA.2013.6549713.

S. Hansen and M. Staber, “Oscillometric blood pressure measurement used for calibration of the arterial tonometry method contributes significantly to error,” Eur. J. Anaesthesiol., vol. 23, no. 9, pp. 781–787, 2006, doi: 10.1017/S0265021506000688.

How to Cite
C. Melinda, I. D. G. H. Wisana, A. Pudji, and T. Triwiyanto, “ECG and NIBP Simulators in One Device Display on TFT Nextion”,, vol. 5, no. 3, pp. 151-157, Aug. 2023.
Research Article

Most read articles by the same author(s)