Performance Comparison of ECG Bio-Amplifier Between Single and Bi-Polar Supply Using Spectrum Analysis Based on Fast Fourier Transform
Abstract
Heart performance is one of the vital signs that cannot be ignored and must be monitored periodically. In this case, the measuring range of the human heart rate is between 60-100 BPM, in which the measurement unit is expressed as Beat per Minute (BPM). Therefore, it is very important to use Electrocardiograph equipment to tap the electrical signals of the heart with correct readings and minimal interference such as frequency of electric lines and noise. The purpose of this study was to compare the instrumentation amplifier using a single supply with a bi-polar supply in the ECG design to select the best instrumentation amplifier, which is expected to contribute to other researchers in choosing the right type of instrumentation amplifier that is efficient and qualified. In this case, the research was carried out by comparing two single supply instrumentation amplifiers using the AD623 IC and the bi-polar supply using the AD620 IC, continued by the use of Fast Fourier Transform (FFT) to determine the frequency spectrum of the ECG signal. The test results further showed that the use of single power instrumentation could reduce more noise compared to the Bi-Polar instrumentation amplifier by strengthening 60 dB Low pass filter circuit. Meanwhile, the FFT results in finding the frequency spectrum explained that the FFT results on the ECG signal provided information that the ECG signal had a frequency range between 0.05 Hz and 100 Hz. When the frequency is more than 100 Hz, the frequency started to be suppressed and when the frequency is less than 100 Hz, the frequency is passed. This research could be further used as a reference by other researchers to determine which type of instrumentation amplifier is better.
Downloads
Copyright (c) 2022 Anita Miftahul Maghfiroh, Syevana Dita Musvika, Vugar Abdullayev
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlikel 4.0 International (CC BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).