A Design of Body Mass Index (BMI) and Body Fat Percentage Device Using Fuzzy Logic

  • Irmalia Suryani Faradisa Institut Teknologi Nasional Malang
  • Radimas Putra Muhammad Electrical Engineering Department, National Institute of Technology, Malang, Indonesia
  • Dyah Ayu Girindraswari Electrical Engineering Department, National Institute of Technology, Malang, Indonesia
Keywords: Body Mass Index; Body Fat Percentage; Fuzzy Logic; Database

Abstract

Nutritional status is something that should consider because it is related to the level of health. Poor health can lead to malnutrition and death. The purpose of this study is to create a tool with a system that can determine the value and category of Body Mass Index (BMI) automatically using fuzzy logic to maintain nutritional status. However, because BMI can only decide underweight or overweight, it is necessary to determine the fat percentage based on the British Journal of Nutrition. In determining BMI and fat percentage, a load cell weight sensor with a capacity of 200 kg as a bodyweight measurement, an ultrasonic sensor HCSR-04 as a body height measurement, and a keypad that functions to enter a name, age, gender, and type of activity data. Database in this system can provide and store easier and real-time data, so the data output is accessible directly. The results are analyzed by comparing the measurement with standard tools. The BMI test taken 5 times, showed that the categories in the system (very thin, thin, normal, heavy, obese) were the same as the MATLAB test and manual calculations. Meanwhile, the results of testing body fat percentage taken 4 times also show the same category as the Body Monitor tool. So, this system can use for daily to monitor the condition of nutritional status and fat percentage in real-time.

Downloads

Download data is not yet available.

References

A. A. G. Ekayana, I. N. B. Hartawan, I. G. M. N. Desnanjaya, and I. D. M. A. B. Joni, “Body mass index measurement system as a desktop-based nutrition monitor,” in Journal of Physics: Conference Series, Feb. 2020, vol. 1469, no. 1. doi: 10.1088/1742-6596/1469/1/012104.

S. E. Putri and A. I. Lubis, “The Relationship Between Body Mass Index with Body Fat Percentage of Participants EXPO 2021 Universitas Teuku Umar,” Journal of Nutrition Science, vol. 2, no. 1, p. 19, May 2021, doi: 10.35308/jns.v2i2.3567.

F. Q. Nuttall, “Body mass index: Obesity, BMI, and health: A critical review,” Nutrition Today, vol. 50, no. 3. Lippincott Williams and Wilkins, pp. 117–128, May 17, 2015. doi: 10.1097/NT.0000000000000092.

Kementerian Kesehatan Republik Indonesia, Peraturan Menteri Kesehatan Republik Indonesia Nomor 41 Tahun 2014 Tentang Pedoman Gizi Seimbang. Indonesia, 2014.

A. K. Gopalakrishnan, “Recommended weight prediction system based on BMI, BMR, food calorie and a neural network,” in 2017 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), Nov. 2017, pp. 15–22. doi: 10.1109/ICIIBMS.2017.8279683.

B. Bajželj, F. Laguzzi, and E. Röös, “The role of fats in the transition to sustainable diets,” The Lancet Planetary Health, vol. 5, no. 9, pp. e644–e653, Sep. 2021, doi: 10.1016/S2542-5196(21)00194-7.

P. Deurenberg, J. A. Weststrate, and J. C. Seidell, “Body mass index as a measure of body fatness: age- and sex-specific prediction formulas,” British Journal of Nutrition, vol. 65, no. 2, pp. 105–114, Mar. 1991, doi: 10.1079/BJN19910073.

D. A. N. Wulandari, T. Prihatin, A. Prasetyo, and N. Merlina, “A Comparison Tsukamoto and Mamdani Methods in Fuzzy Inference System for Determining Nutritional Toddlers,” in 2018 6th International Conference on Cyber and IT Service Management (CITSM), Aug. 2018, pp. 1–7. doi: 10.1109/CITSM.2018.8674248.

A. A. Taha and M. A. Taha, “Using Fuzzy Logic Decision Support System to Predict the Lifted Weight for Students at Weightlifting Class,” International Journal of Computer and Information Engineering, vol. 8, no. 8, pp. 1560–1564, 2014.

M. Sunjana, “Prediction of Production Using the Fuzzy Mamdani Inference System,” International Journal of Advanced Science and Technology (IJAST) , vol. 28, no. 6, pp. 136–139, Sep. 2019.

A. T. Khomeiny, T. Restu Kusuma, A. N. Handayani, A. Prasetya Wibawa, and A. H. Supadmi Irianti, “Grading System Recommendations for Students using Fuzzy Mamdani Logic,” in 4th International Conference on Vocational Education and Training, ICOVET 2020, Sep. 2020, pp. 273–277. doi: 10.1109/ICOVET50258.2020.9230299.

F. Sari, Desyanti, T. Radillah, S. Nurjannah, Julimar, and J. Y. Pakpahan, “Examining child obesity risk level using fuzzy inference system,” International Journal of Public Health Science, vol. 10, no. 3, pp. 679–687, Sep. 2021, doi: 10.11591/ijphs.v10i3.20928.

I. M. Lopes, B. M. Silva, J. J. P. C. Rodrigues, J. Lloret, and M. L. Proenca, “A mobile health monitoring solution for weight control,” in 2011 International Conference on Wireless Communications and Signal Processing (WCSP), Nov. 2011, pp. 1–5. doi: 10.1109/WCSP.2011.6096926.

N. Ismail et al., “WEB-BASED CALORIE INFORMATION SYSTEM,” vol. 10, 2015, [Online]. Available: www.arpnjournals.com

C. Kim and S. Youm, “Development of a Web Application Based on Human Body Obesity Index and Self-Obesity Diagnosis Model Using the Data Mining Methodology,” Sustainability, vol. 12, no. 9, p. 3702, May 2020, doi: 10.3390/su12093702.

Dr. M. Kannan, K. Tharanitharan, A. Sreeba, Y. Nandhini, T. Pavithrakumar, and Ms. T. Akila, “Mechanised Body Mass Index (BMI) Calculator Using PIC 16F877A,” International Journal for Research & Development in Technology (IJRDT), vol. 7, no. 3, pp. 734–736, Mar. 2017.

D. Syahputra, Tulus, and Sawaluddin, “The Accuracy Of Fuzzy Sugeno Method With Antropometry On Determination Natural Patient Status,” in Journal of Physics: Conference Series, Aug. 2017, pp. 1–7. doi: 10.1088/1742-6596/930/1/012022.

A. D. A. Karim, N. A. M. Lazam, N. A. Mohd Yahya, and S. Abdul Rahman, “Portable Real-Time BMI Nutritional Advice,” in IOP Conference Series: Materials Science and Engineering, Mar. 2021, p. 012017. doi: 10.1088/1757-899X/1176/1/012017.

M. A. Riyadi, A. Nugraha, M. B. Santoso, D. Septaditya, and T. Prakoso, “Development of Bio-impedance Analyzer (BIA) for Body Fat Calculation,” Apr. 2017. doi: 10.1088/1757-899X/190/1/012018.

T. J. Erinle, D. H. Oladebeye, and I. B. Ademiloye, “Parametric Design of Height and Weight Measuring System,” IJIREEICE, vol. 8, no. 7, pp. 22–34, Jul. 2020, doi: 10.17148/ijireeice.2020.8705.

M. O. Akindele, J. S. Phillips, and E. U. Igumbor, “The relationship between body fat percentage and body mass index in overweight and obese individuals in an urban African setting,” Journal of Public Health in Africa, vol. 7, no. 1, pp. 15–19, 2016, doi: 10.4081/jphia.2016.515.

A. Dwi Elisanti, R. Ayuninghemi, and E. Tri Ardianto, “Prototype Design of Body Mass Index Measurement for Adolescence to Prevent Chronic Energy Deficiency in Pregnancy Based on Arduino,” 2021, doi: 10.26630/JK.V4I2.84.

E. C. Abana, “BMI Assessment Machine with Recommended Ideal Weight,” International Journal of Advanced Trends in Computer Science and Engineering, vol. 9, no. 3, pp. 4163–4167, Jun. 2020, doi: 10.30534/ijatcse/2020/247932020.

R. K. Jain, B. Gupta, M. Ansari, and P. P. Ray, “IOT Enabled Smart Drip Irrigation System Using Web/Android Applications,” in 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Jul. 2020, pp. 1–6. doi: 10.1109/ICCCNT49239.2020.9225345.

E. F. Yogachi, V. M. Nasution, and G. Prakarsa, “Design and Development of Fuzzy Logic Application Mamdani Method in Predicting The Number of Covid-19 Positive Cases in West Java,” IOP Conference Series: Materials Science and Engineering, vol. 1115, no. 1, p. 012031, Mar. 2021, doi: 10.1088/1757-899X/1115/1/012031.

J. Nugroho, L. Linawati, and T. Mahatma, “Analysis of Lecturers Competency Performance Evaluation using Fuzzy Modeling,” International Journal of Active Learning, vol. 4, no. 2, pp. 99–113, Oct. 2019.

D. S. Candra, Z. Syahlan, and E. Widodo, “DESIGN AND DEVELOPMENT OF THE MEASURING OF THE BODY MASS INDEX TO THE INDONESIA NAVY BASED ON VISUAL STUDIO,” International Journal of ASRO, vol. 10, no. 2, pp. 116–124, Jul. 2019.

O. O. Patrick, M. A. Kazeem, and A. A. Olumuyiwa, “Development, Implementation and Usage of an Automated Body Mass Index (ABMI) System,” 2020. [Online]. Available: www.globalscientificjournal.com

S. M. Omair, M. F. Shamim, A. Desai, N. Shahid, G. Munir, and M. Z. Ul Haque, “Digital and Analog Body Mass Index Calculating Device: A comparative study,” Indian Journal of Science and Technology, vol. 10, no. 45, pp. 1–5, Dec. 2017, doi: 10.17485/ijst/2017/v10i45/120632.

I. E. Owolabi, V. A. Akpan, and O. P. Oludola, “A Low-Cost Automatic Body Mass Index Machine: The Design, Development, Calibration, Testing and Analysis,” 2021. [Online]. Available: http://www.aiscience.org/journal/ijbcshttp://creativecommons.org/licenses/by/4.0/

S. Husain, Y. Ahmad, M. Sharma, and S. Ali, “Comparative Analysis of Defuzzification Approaches from an Aspect of Real life problem,” vol. 19, no. 6, pp. 19–25, doi: 10.9790/0661-1906031925.

B. Mark et al., “Development of Automated Body Mass Index Calculation Device,” International Journal of Applied Engineering Research, vol. 11, no. 7, pp. 5195–5201, 2016, [Online]. Available: http://www.ripublication.com

A. Manan, V. Wiley, and T. Lucas, “Programmer Selection Using Modified Fuzzy Mamdani Method,” Lontar Komputer : Jurnal Ilmiah Teknologi Informasi, p. 108, Aug. 2019, doi: 10.24843/lkjiti.2019.v10.i02.p05.

Published
2022-05-30
How to Cite
[1]
I. S. Faradisa, R. P. Muhammad, and D. A. Girindraswari, “A Design of Body Mass Index (BMI) and Body Fat Percentage Device Using Fuzzy Logic”, Indones.J.electronic.electromed.med.inf, vol. 4, no. 2, pp. 94-106, May 2022.
Section
Research Article