Design and Implementation of Portable and Prospective Embedded System and IoT Laboratory Kit Modules

  • Era Madona Department of Electrical Engineering, Politeknik Negeri Padang, 25168, Padang – Sumatera Barat, Indonesia
  • Yulastri Yulastri Department of Electrical Engineering, Politeknik Negeri Padang, 25168, Padang – Sumatera Barat, Indonesia
  • Anggara Nasution Department of Electrical Engineering, Politeknik Negeri Padang, 25168, Padang – Sumatera Barat, Indonesia
  • M Irmansyah Department of Electrical Engineering, Politeknik Negeri Padang, 25168, Padang – Sumatera Barat, Indonesia
Keywords: Laboratory kit module, embedded system, IoT, Portable

Abstract

The purpose of this research is to design and implement a new design of a low-cost, portable and prospective laboratory kit module. Laboratory kits are made easy to assemble, with relatively small dimensions. and suitable for use in laboratories with limited experimental space and funds. The research stages are carried out starting with needs analysis, hardware design, software design and overall testing. The test results of the DHT 11 temperature sensor can read the temperature and humidity index whose data is in the form of digital data and is displayed on the LCD. The PWM of the DC motor and the direction of rotation of the motor can be controlled using the DHT11 sensor. The keypad can control the direction of rotation of the servo motor so that students are expected to be able to provide authentication through a password with a keypad. Testing the module kit for data communication using the local network Testing the module kit for data communication using the local network is able to control the motor and relay even though there is still a delay in sending data this is due to the condition of the internet network at the time of testing. The overall test results work well. It is hoped that this module will encourage students to be able to create technological innovation applications based on embedded systems and IoT which will lead to the creation of technology among students.

Downloads

Download data is not yet available.

References

Ananda Mohon Ghosh; Debashish Halder; S K Alamgir Hossain.2016. Remote health monitoring system through IoT, 5th International Conference on Informatics, Electronics and Vision (ICIEV).

. Sarfraz Fayaz Khan, Health care monitoring system in Internet of Things (IoT) by using RFID, 2017 6th International Conference on Industrial Technology and Management (ICITM)

L. Lamidi, A. Kholiq, and M. Ali, “A Low Cost Baby Incubator Design Equipped with Vital Sign Parameters”, ijeeemi, vol. 3, no. 2, pp. 53-58, May 2021.

A. Cholid, H. Ariswati, and S. Syaifudin, “Digital Pressure Meter Equipped with Temperature and Humidity”, ijeeemi, vol. 2, no. 1, pp. 1-5, Feb. 2020.

M. Islam et al., “Android based heart rate monitoring and automatic notification system,” 5th IEEE Reg. 10 Humanit. Technol. Conf. 2017, R10-HTC 2017, vol. 2018-Janua, pp. 436–439, 2018, doi: 10.1109/R10-HTC.2017.8288993.

M. I. Sani, G. A. Mutiara, and R. S. D. W. Putra, “Fit-NES: wearable bracelet for heart rate monitoring,” TELKOMNIKA (Telecommunication Comput. Electron. Control., vol. 17, no. 1, p. 392, 2019, doi: 10.12928/telkomnika.v17i1.11611.

H. Yuliandoko, Subono, V. A. Wardhany, S. H. Pramono, and P. Siwindarto, “Design of flood warning system based IoT and water characteristics,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 16, no. 5, pp. 2101–2110, 2018, doi: 10.12928/TELKOMNIKA.v16i5.7636.

E. Madona, M. Irmansyah, and A. Nasution, “Design Dan Implementasi Wireless Sensor Network Pada Prototype Pendeteksian Material Galodo,” vol. 11, pp. 39–42, 2019.

J. Lee, I. Khan, S. Choi, and Y. W. Kwon, “A smart iot device for detecting and responding to earthquakes,” Electron., vol. 8, no. 12, pp. 1–19, 2019, doi: 10.3390/electronics8121546.

S. K. Bhoi et al., “FireDS-IoT: A Fire Detection System for Smart Home Based on IoT Data Analytics,” Proc. - 2018 Int. Conf. Inf. Technol. ICIT 2018, pp. 161–165, 2018, doi: 10.1109/ICIT.2018.00042.

J. Bauer and N. Aschenbruck, “Design and implementation of an agricultural monitoring system for smart farming,” 2018 IoT Vert. Top. Summit Agric. - Tuscany, IOT Tuscany 2018, pp. 1–6, 2018, doi: 10.1109/IOT-TUSCANY.2018.8373022.

S. R. Prathibha, A. Hongal, and M. P. Jyothi, “IOT Based Monitoring System in Smart Agriculture,” Proc. - 2017 Int. Conf. Recent Adv. Electron. Commun. Technol. ICRAECT 2017, pp. 81–84, 2017, doi: 10.1109/ICRAECT.2017.52.

“IoT-based Intelligent Irrigation Management and Monitoring System using Arduino,” TELKOMNIKA (Telecommunication Comput. Electron. Control., vol. 17, no. 5, pp. 2378–2388, 2019, doi: 10.12928/telkomnika.v17i5.12818.

H. P. Breivold and K. Sandstrom, “Internet of Things for Industrial Automation-Challenges and Technical Solutions,” Proc. - 2015 IEEE Int. Conf. Data Sci. Data Intensive Syst. 8th IEEE Int. Conf. Cyber, Phys. Soc. Comput. 11th IEEE Int. Conf. Green Comput. Commun. 8th IEEE Inte, pp. 532–539, 2015, doi: 10.1109/DSDIS.2015.11.

A. Caputo, G. Marzi, and M. M. Pellegrini, “The Internet of Things in manufacturing innovation processes,” Bus. Process Manag. J., vol. 22, no. 2, pp. 383–402, 2016, doi: 10.1108/bpmj-05-2015-0072.

H. W. Picot, M. Ateeq, B. Abdullah, and J. Cullen, “Industry 4.0 labview based industrial condition monitoring system for industrial iot system,” Proc. - Int. Conf. Dev. eSystems Eng. DeSE, vol. October-2019, pp. 1020–1025, 2019, doi: 10.1109/DeSE.2019.00189.

P Koopman, et al. Undergraduate Embedded System Education at Carnegie Mellon. ACM Trans. Embed. Comput. Syst. 2005; 4(3): 500-528.

J. P. Mendoza, J. M. V. Carrizo, and F. J. R. Sánchez, “Project based learning experiences for embedded systems design,” Proc. 2016 Technol. Appl. to Electron. Teaching, TAEE 2016, 2016, doi: 10.1109/TAEE.2016.7528370.

C. L. C. Bual, R. D. Cunanan, R. A. R. Bedruz, A. A. Bandala, R. R. P. Vicerra, and E. P. Dadios, “Design of Controller and PWM-enabled DC Motor Simulation using Proteus 8 for Flipper Track Robot,” 2019 IEEE 11th Int. Conf. Humanoid, Nanotechnology, Inf. Technol. Commun. Control. Environ. Manag. HNICEM 2019, no. 1, pp. 1–5, 2019, doi: 10.1109/HNICEM48295.2019.9072736.

P. Bhadani and V. Vashisht, “Soil moisture, temperature and humidity measurement using arduino,” Proc. 9th Int. Conf. Cloud Comput. Data Sci. Eng. Conflu. 2019, pp. 567–571, 2019, doi: 10.1109/CONFLUENCE.2019.8776973.

P. Sutyasadi and M. B. Wicaksono, “Joint control of a robotic arm using particle swarm optimization based H2/H∞ robust control on arduino,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 18, no. 2, pp. 1021–1029, 2020, doi: 10.12928/TELKOMNIKA.V18I2.14749.

Indrianto, M. N. I. Susanti, R. Arianto, and R. R. A. Siregar, “Embedded system practicum module for increase student comprehension of microcontroller,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 16, no. 1, pp. 53–60, 2018, doi: 10.12928/TELKOMNIKA.v16i1.4194.

. R. Sistem, “Penerapan Rangkaian Simulasi Terintegrasi Untuk Efisiensi Penggunaan,” vol. 1, no. 10, pp. 4–8, 2021.

Deaky, B., Lupulescu, N. B., & Ursutiu, D. (2011). Extended educational use of the Microcontroller Student Learning Kit (MCU SLK). 2011 IEEE Global Engineering Education Conference, EDUCON 2011, May 2011, 913–916. https://doi.org/10.1109/EDUCON.2011.5773254

H. G. Espinosa and D. V. Thiel, “MATLAB-Based interactive tool for teaching electromagnetics [education corner],” IEEE Antennas Propag. Mag., vol. 59, no. 5, pp. 140–146, 2017, doi: 10.1109/MAP.2017.2731218.

M. Taruk and A. Ashari, “Analisis Throughput Varian TCP Pada Model Jaringan WiMAX,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 10, no. 2, p. 115, 2016, doi: 10.22146/ijccs.15529.

A. G. Abdullah, D. L. Hakim, M. A. Auliya, A. B. D. Nandiyanto, and L. S. Riza, “Low-cost and portable process control laboratory kit,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 16, no. 1, pp. 232–240, 2018, doi: 10.12928/TELKOMNIKA.v16i1.6888.

L. Ali, L. Rahman, and S. Akhter, “Module-based Edukit for teaching and learning 8051 microcontroller programming,” 2nd IEEE Int. Conf. Telecommun. Photonics, ICTP 2017, vol. 2017-December, no. February 2018, pp. 57–61, 2018, doi: 10.1109/ICTP.2017.8285918.

M. R. C. Reis et al., “Speed control for direct current motor using optimization tuning for PID controller,” EEEIC 2016 - Int. Conf. Environ. Electr. Eng., pp. 3–6, 2016, doi: 10.1109/EEEIC.2016.7555596.

E. Z. Orji, U. I. Nduanya, and C. V Oleka, “Microcontroller Based Digital Door Lock Security System Using Keypad,” Int. J. Latest Technol. Eng. Manag. & Appl. Sci., vol. 8, no. 1, pp. 92–97, 2019.

Y. Wang and Z. Chi, “System of wireless temperature and humidity monitoring based on Arduino Uno platform,” Proc. - 2016 6th Int. Conf. Instrum. Meas. Comput. Commun. Control. IMCCC 2016, pp. 770–773, 2016, doi: 10.1109/IMCCC.2016.89.

Published
2022-02-06
How to Cite
[1]
E. Madona, Y. Yulastri, A. Nasution, and M. Irmansyah, “Design and Implementation of Portable and Prospective Embedded System and IoT Laboratory Kit Modules”, Indones.J.electronic.electromed.med.inf, vol. 4, no. 1, pp. 28-35, Feb. 2022.
Section
Research Article