
 Indonesian Journal of Electronics, Electromedical, and Medical Informatics (IJEEEMI)

 Vol. 3, No. 1, February 2021, pp. 15-20

DOI: 10. 35882/ijeeemi.v3i1.3 ISSN: 2656-8624

Accredited by Ministry of Research and Technology /National Research and Innovation Agency

Decree No: 200/M/KPT/2020

Journal homepage: http://ijeeemi.poltekkesdepkes-sby.ac.id/index.php/ijeeemi 15

Communication Coroutines For Parallel Program

Using DW26010 Many Core Processor

Ajit Singh

Department of Computer Science, Patna Women's College

Patna University, Patna 800004, Bihar, India

Article Information Abstract

Article History:

Received Feb 5, 2021

Revised Feb 19, 2021

Accepted Feb 21, 2021

 Communication between parallel programs is an indispensable part of parallel computing.

SW26010 is a heterogeneous many-core processor used to build the Sunway Taihu Light

supercomputer, which is well suited for parallel computing. There is the designing and implementing

a coroutine scheduling system on the SW26010 processor to improve its concurrency, it is very

important and necessary to achieve communication between coroutines for the coroutine scheduling

system in advance. Therefore, this paper proposes a communication system for data and information

exchange between coroutines on SW26010 processor, which contains the following parts. The

designing and implementation a producer-consumer mode channel communication based on ring

buffer, and it designs synchronization mechanism for condition of multi-producer and multi-

consumer based on the different atomic operation on MPE (management processing element) and

CPE (computing processing element) of SW26010. There is also the designing of a wake-up

mechanism between the producer and the consumer, which reduces the waiting of the program for

communication. The testing and analysis of the performance of channel in different numbers of

producers and consumers, draw the conclusion that when the number of producers and consumers

increases, the channel performance will decrease.

Keywords:

Coroutine

SW26010

Many-core

Parallel Communication

Synchronisation

Corresponding Author:

Ajit Singh

Ajit_singh24@yahoo.Com

Department of Computer Science

Patna Women's College, Patna University, India

This work is an open-access article and licensed under

a Creative Commons Attribution-ShareAlike 4.0 International

License (CC BY-SA 4.0).

I. INTRODUCTION

Performance processer developed by Wuxi Jiangnan
Institute of Computing Technology. It belongs to Sunway series.
It has good performance in super computer and high-
performance computing area. And it is the main building-block
of the current worlds third fastest supercomputer: Sunway Taihu
Light [1]. This processor has been used in many fields of high-
performance computing, such as computational mechanics [2],
bioinformatics [3], deep learning [4] and so on. But for a long
time, application development on the processor has several
difficulties like high learning costs, highly associated with
hardware, hard to migrate and so on. A SW26010 processor
consists of 4 management processing element (MPE, also called
master core) and 256 computing processing elements (CPE, also
called slave core). However, the slave core of the SW26010
processor can only run one thread and it doesn’t support
blocking and switching, which limits its parallel ability.
Therefore, our team uses the idea of coroutine, and designs a
coroutine running framework on SW26010 processor to replace
the direct use of threads on CPEs, which breaks through the

parallel restriction of Sunway many core processors, and makes
the upper applications be run more efficiently.

As an indispensable part of the coroutine running
framework, the communication between coroutines need to be
discussed. Since the communication between threads on
Sunway many-core processor is mainly based on batch data
transfer, and there is no fine-grained communication method
suitable for ordinary programs, this paper designs a channel
communication method which can exchange messages between
coroutines on either MPE or CPE of Sunway processor, and
provides a guarantee for cooperation of parallel coroutines.

This paper includes the following parts: First, the channel
communication in producer-consumer mode is implemented
based on ring buffer, and then, to ensure that no errors occur on
the condition of multi-producer or multi-consumer competing
with each other, the mechanism of synchronization is designed
based on the different atomic operations on the master and slave
core, which ensures the correctness of data transmission. Next, i
design a wake-up mechanism of producer and consumer, which
reduces the waiting of the program for communication. At last,

http://ijeeemi.poltekkesdepkes-sby.ac.id/index.php/ijeeemi
https://creativecommons.org/licenses/by-sa/4.0/

 Indonesian Journal of Electronics, Electromedical, and Medical Informatics (IJEEEMI)

 Vol. 3, No. 1, February 2021, pp. 15-20

DOI: 10. 35882/ijeeemi.v3i1.3 ISSN: 2656-8624

Accredited by Ministry of Research and Technology /National Research and Innovation Agency

Decree No: 200/M/KPT/2020

Journal homepage: http://ijeeemi.poltekkesdepkes-sby.ac.id/index.php/ijeeemi 16

this paper tests the performance of channel in different numbers
of producers and consumers.

II. BACKGROUND AND RELATED WORK

A. SW26010 many-core processor

SW26010 is a heterogeneous many-core processor
independently developed and designed by Wuxi Jiangnan
Institute of Computing Technology of China. The
heterogeneous many-core architecture combining on-chip
computing array cluster and distributed shared storage is
adopted. Sunway multi-core processor is commonly used in the
execution of high-performance computing programs. Its
hardware architecture is shown in the Fig. 1.

Fig. 1. SW26010 processor

Each SW26010 chip contains 260 cores, which are divided
into four core groups (CGs). Each core group contains a
management processing element (MPE, or master core), and the
subordinate 64 computing processing elements (CPE, or slave
core). The frequency of the master and slave core is 1.45GHz.
64 slave cores are combined into a CPE cluster organized as an
8×8 mesh. Each core group is connected with an 8GB memory
by a memory controller (MC), and the four core groups are
connected by the network on-chip (Noc). The Sunway 26010
processor is designed based on the alpha instruction set, in which
the master core supports the complete alpha instruction set,
while the slave core supports the simplified alpha instruction set.
As for the storage structure, the master and slave cores can both
access the main memory, Each MPE has 32KB L1 data cache
and 256 KB L2 instruction/data cache to ensure fast read and
write of the main memory, while the slave core has no cache for
memory read and write, resulting in inefficient access to
memory. But each slave core contains a 64KB local device
memory (LDM), which can store the data needed for program
running on the core. Each slave core can read and write its own
LDM quickly, but cannot access LDM of other slave core, the
slave core can copy data from the main memory to LDM or write
it back in batches by Direct Memory Access (DMA). The whole
chip can provide computing peak performance over 3TFlops.

The operating system is a customized Linux flavour running
on the MPE, C/C++ and FORTRAN programs are supported on
MPE and C, FORTRAN programs are supported on CPE. The
MPE and CPE on Sunway processor have different running
environments, so the programs on the MPE and CPE need to be
compiled separately, and then packaged in a single executable
file by mixed compilation, finally submitted to work queue for
execution. It can be seen from the calculation structure of the
SW26010 processor that the computing pair of CPEs accounts
for more than 98% of the computing pair of the whole chip, so
the development of application on SW26010 processor needs to
give full play to the computing pair of CPEs. In general,
application development on SW26010 is based on the parallel
execution of MPE and CPE. Computing tasks are divided into
small blocks and assigned to CPEs to execute, and the MPE
executes communications or other parts that CPEs cannot run.
This way, the core computing part of the program can be
executed by CPEs, and MPE only responsible for management
part.

B. Implementation of coroutine on SW26010 processor

Coroutine is a user-controlled way of switching programs
and achieving concurrency without operating system
scheduling. The concept of coroutine is not complex. The basic
principle is that when a program is running, it can actively give
up its own control of running so that the thread can switch to
other programs. Therefore, there are some simple coroutines
implementations [5]. However, a good implementation of
coroutine requires more detailed design in terms of scheduling
and communication [6]. Owing to less system resource costs
than threads, coroutine is often used in high-concurrency
scenarios such as ib crawlers, distributed system [7], simulation
mechanism [8] and so on. For the SW26010 processor, there are
only one thread runs on a CPE. This scheme doesn’t support
blocking and switching, and limits its parallel ability.

Fig. 2. Coroutines on SW26010 processor

The use of coroutine can break through the concurrency

restriction of CPE, and can achieve multiple concurrencies on a

CPE only with one single thread. So, our team decided to

develop a framework of coroutine on the SW26010 processor.

Based on the master-slave parallel structure of the SW26010

processor, We design and implement a coroutine library which

combines dispatch, execution, communication and other

http://ijeeemi.poltekkesdepkes-sby.ac.id/index.php/ijeeemi

 Indonesian Journal of Electronics, Electromedical, and Medical Informatics (IJEEEMI)

 Vol. 3, No. 1, February 2021, pp. 15-20

DOI: 10. 35882/ijeeemi.v3i1.3 ISSN: 2656-8624

Accredited by Ministry of Research and Technology /National Research and Innovation Agency

Decree No: 200/M/KPT/2020

Journal homepage: http://ijeeemi.poltekkesdepkes-sby.ac.id/index.php/ijeeemi 17

modules. The coroutine framework based on the a thread

interface provided by SW26010, using threads on CPEs as

coroutines instead of using it directly. In this way, upper

applications can achieve higher concurrency and gain more

efficiency. Coroutines on SW26010 processor is shown in Fig.

2. The implementation of coroutine on the SW26010 Processor

consists of the following parts:

1. Scheduler: The scheduler is run on MPE, which creates a

coroutine, initializes the coroutine, and assigns the coroutine to

the execution queues of different executors on CPEs, waiting for

the executor to execute.

2. Executors: Executors are run on CPEs, and a CPE can only

run one executor so each core group contains 64 executors,

executors can execute specific programs. Each executor contains

two queues, one is a runnable queue, the other is a wait queue,

runnable queue contains coroutines that can be executes, wait

queue contains coroutines blocked because of communication or

other reason.

3. Communication module: If coroutines needs to cooperate

with each other, they need to communicate and exchange data.

The communication module of coroutine is called channel, a

coroutine can send messages to others by using channel. This

paper is mainly introduce the communication module.

III. DESIGN OF COMMUNICATION BETWEEN COROUTINES

A. Data structure of channel

Channel's data structure is based on ring buffer. Ring buffer
[9] is a first-in-first-out data structure that reduces duplicate
address operations and increases stability relative to queues [10].
Ring buffer is widely used in various fields [11]. It is easy to
separate data writing from reading by using ring buffer, avoids
competition between reading threads and writing threads, and
reduces using of locks. I use ring buffer as channel’s
infrastructure. The working principle of ring buffer is shown in
the Fig. 3:

Fig. 3. Ring buffer structure

As shown in the Figure 3, in a fixed size buffer, there are two
pointers: read and write. When some data is written to buffer,
write increases. When some data is read from buffer, read
increases. Using ring buffer, i can simply realize producer-
consumer mode. Because the producer only affects the write
pointer and the consumer only affects the read pointer, when
there is only one producer and one consumer, I do not need to
lock the buffer, which increases the efficiency of
communication. The channel structure including ring buffer is
as follows:

typedef struct {

char *buffer;

int capacity;

int elem_size;

int read;

int write;

int to_read;

int to_write;

list read_queue;

list write_queue;

}channel;

In the channel structure, buffer refers to the buffer where data
is stored, size refers to the size of a message, capacity refers to
the maximum number of messages stored in the buffer, write
refers to the location where the message will be written, read
refers to the next message can be read, to read and to write are
used to ensure parallel synchronization when multiple producers
or consumers are involved, which will be described in the next
section in detail. The two lists are used to store coroutines
waiting on the channel when send or receive fails, which will be
described in Section 3.3. The data structure of channel is stored
in main memory, so that both MPE and CPE can access.

B. Design of parallel synchronization mechanism

With ring buffer, messages can be delivered safely without
synchronization mechanism in the case of single producer and
single consumer. But when there are multiple producers or
consumers, the contention of multiple threads for the same data
may result in data coverage. Therefore, i need to take certain
measures to ensure that the data in the channel is correct [12]. In
x86 instruction computers, CAS (compare and swap) atomic
operation is often used to deal with multithreading competition
[13]. In SW26010 processor, MPE and CPE have different
degrees of instruction support. CAS operation is supported on
MPE, but not on CPE. i first use CAS operation to deal with
multithreading competition on MPE.

1) Parallel synchronization mechanism on MPE
CAS (compare and swap) can compare and exchange data in

one instruction, which is commonly used in the unlocked
algorithm. Its common form is as follows:

CAS (dest, oldval, newval)

Where dest is the data address, oldval is the current value,
and newval is the new value. When the value pointed to by dest
is equal to oldval, the value will be updated to newval and true
will be returned, otherwise it will not be updated and false will
be returned. When two threads use CAS instruction at the same
time, only one thread can succeed, and other threads will fail,
thus i ensures that only one thread can complete CAS operation
and process data. Using CAS operation to build the parallel
synchronization mechanism of message sending is as follows:

http://ijeeemi.poltekkesdepkes-sby.ac.id/index.php/ijeeemi

 Indonesian Journal of Electronics, Electromedical, and Medical Informatics (IJEEEMI)

 Vol. 3, No. 1, February 2021, pp. 15-20

DOI: 10. 35882/ijeeemi.v3i1.3 ISSN: 2656-8624

Accredited by Ministry of Research and Technology /National Research and Innovation Agency

Decree No: 200/M/KPT/2020

Journal homepage: http://ijeeemi.poltekkesdepkes-sby.ac.id/index.php/ijeeemi 18

do {

 if (full(chan)){

 co_swap_out();

 }

 temp = chan->write;

 next = temp+1;

 ok = CAS(&chan->write, temp, next);

} while (!ok);

//copy data here

When sending data to the channel, i first determine whether
the channel is full. If it is full, it is unable to send data to the
channel, which gives up the control right and let other coroutines
run. If the channel is not full, it first reads the write pointer and
then updates the write value with CAS operation. If it succeeds,
it means that no other coroutines successfully change the write
value, data can be sent to buffer according to the write pointer.
Note that while other coroutines may operate on write values
when current coroutine writes data to the buffer, data coverage
will not occur because i have determined the write location in
the buffer.

2) Parallel synchronization mechanism on CPE
While CAS can be used in MPE to realize the

synchronization of parallel programs and ensure the correctness
of communication, it is not supported on CPE. There is only one
atomic operation supported on CPE, which can modifies data.
Its interface is as follows.

updt(_n_, _addr_)

This operation represents adding _n_ to the data pointed by
addr. Parallel synchronization of channel is more difficult to
achieve on CPE because the atomic operation changes data
directly without comparison. This paper uses the mechanism
shown below to synchronize channels, as shown in the listing
program.

 while (1){

 if (full(chan)){

 co_swap_out();

 }

 temp = chan->write;

 if (temp == chan->to_write)}

 updt_addw(1,&(chan->write));

 } else {

 continue;

 }

 if (chan->write == temp+1){

 //copy data here

 updt_addw (1,&chan->to_write);

 return 0;

 } else {

 updt_addw (-1,&chan->to_write);

 continue;

 }

}

In order to synchronize the writing of buffer using atomic
operations, to write, a comparison of the write pointer is
introduced. When to write and write are equal, it indicates that
no coroutine is sending messages to the channel. When they are
not equal, it indicates that a coroutine is sending. At the
beginning, i read the value of variable write, save it in the
variable temp, and compare it with the value of to write. If they
are not equal, it means that other producer has modified the
value of the write. At this time, the write value should be read
again. If they are equal, it means that other producer has finished
sending to the channel, then this producer will modify the value
of write. Since comparison and update cannot be done in one
instruction, comparison and update may still be performed by
two producers in the order of 6.-6.-7.-7., there is still a case
where two producers have modified the value of variable write,
so i read the value of variable write again and compare it with
the value saved by the local variable temp. If the current value
of variable writes equals to temp+1, which indicates that only
one atomic operation has been performed, message can be send
to channel in next line, and the value of variable to write can be
updated to complete one message sending. If the value of
variable write is not equal to temp+1 at this time, it means that
other threads have also made atomic updates, this producer
should reduce the value of variable write by atomic update, let
the write value revert to the state that was before this producer
accessed. This send can be considered a failure, and i do it again
from the beginning. In this way, we ensure that when multiple
producers send data to the channel, at most one producer can
find that after atomic operation, the value of variable write equal
to the value of variable temp+1, and other producers will fail.
Thus, the synchronization of messages in the channel is ensured.
Although the synchronization mechanism on CPE can also
ensure that data will not be overwritten or be read repeatedly, it
is more complex than the CAS operation on MPE, and has the
possibility of invalid operation, so the performance loss is higher
than that of MPE. III

3) Different modes of channels
Although using the synchronization mechanism can ensure

the correctness of the messages in channel, it will also result in
decreasing the communication efficiency. Therefore, in order to
maximize the communication efficiency, this paper designs
different communication modes for different number of
producers and consumers. Different modes can be chosen
according to the actual needs to maximize the efficiency of
communication. There are four modes in total:

Single producer-single consumer: only one producer and
one consumer. In this case, there is no synchronization, and the
efficiency is the highest.

http://ijeeemi.poltekkesdepkes-sby.ac.id/index.php/ijeeemi

 Indonesian Journal of Electronics, Electromedical, and Medical Informatics (IJEEEMI)

 Vol. 3, No. 1, February 2021, pp. 15-20

DOI: 10. 35882/ijeeemi.v3i1.3 ISSN: 2656-8624

Accredited by Ministry of Research and Technology /National Research and Innovation Agency

Decree No: 200/M/KPT/2020

Journal homepage: http://ijeeemi.poltekkesdepkes-sby.ac.id/index.php/ijeeemi 19

Single producer- multi consumer: only one producer, but
multiple consumers. In this case, the consumer read buffer needs
to be synchronized, but the producer can send messages directly.

Multi producer-single consumer: multiple producers, but only
one consumer. In this case, the producer write buffer needs to be
synchronized, and the consumer can receive messages directly.

Multi producer-multi consumer: multiple producers and
multiple consumers. In this case, both reading and writing of
buffer needs to be synchronized, which is also the default mode
of channel.

C. Blocking and wakeup mechanism of channel

In the process of communication, sometimes the program
wants to communicate cannot communicate normally, for
example, the producer cannot send message when the channel is
full. At that time, the program has no choice but to wait. When
it is implemented in multi-threaded mode, the mechanism of
cyclic access or thread switching can be chosen. However, the
thread switching consumes much system resources, which will
lead to the performance degradation. But for the program based
on coroutines, the switching consumes less resources, i choose
to let the coroutine block and switch when the communication
cannot be carried out. If a coroutine is blocked and switched off
running queue, other coroutines is going on running, which
reduces the time cost for waiting. When a producer sends
messages to channel, it will first determine whether the channel
buffer is full. If it is not full, it will send a message and continue
to run. If it is full, the message cannot be sent, and the producer
coroutines will enter a block, and the executor will transfer the
execution right to other coroutines to run. The blocked coroutine
will be recorded on the waiting queue of the channel. The
blocked coroutine does not wake up automatically or be
awakened by executor, but it wakes up when a consumer takes
a message out of the channel so that the channel is no longer full.
At that point, the blocked coroutine back to the running queue to
continue run, and has a high probability successfully send
messages. Similarly, when the channel is empty, the consumer
coroutine will also be blocked and be awakened by a producer
coroutine. This kind of mutual wake-up mechanism allows a
program to directly give up the execution right in the case of
unable to communicate, and let other coroutines run instead of
waiting in a loop. It also does not consume a lot of system
resources like thread switching, and effectively uses the
operation ability of the processor.

IV. RESULTS AND ANALYSIS

A. Performance test of channel

In order to understand the specific performance of channel
communication, it is necessary to test the operation performance
of channel under different conditions. Since channel has
different modes, which will affect the competition between
producers and consumers, we test the situation with and without
competition, on MPE and on CPE. The used message data is an
integer, with the average of multiple send times as a result.

TABLE I. CHANNEL COMMUNICATION PERFORMANCE WITH DIFFERENT

PRODUCER AND CONSUMER NUMBER.

Time (μs) 1(μs) 10(μs) 32(μs)

MPE send 0.13 0.22 0.22

MPE receive 0.12 0.23 0.22

CPE send 1.37 30 457

CPE receive 1.95 54 791

It can be seen that the communication efficiency of the slave
core is lower than that of the main core, and the performance
degradation is more serious when the multi-core competes.
From the results we can draw a conclusion that the more
producers or consumers compete, the more serious the
communication efficiency degradation is.

There are two reasons why the communication efficiency of
CPE is lower than that of MPE. First is that the speed of
accessing the main memory from CPE is lower than that of
MPE. Second, the synchronization mechanism on CPEs can
cause much more decrease of efficiency when producer or
consumer increases. More processes competing, higher the
probability of invalid operation, then the average
communication time increases.

V. CONCLUSIONS

In this paper, we design the producer-consumer mode inter-core

communication based on the coroutine implementation on

SW26010 processor. For the channel mode communication that

suitable for both MPE and CPE, i design the data structure

based on ring buffer, the synchronization mechanism based on

different atomic operations of MPE and CPE, and the

mechanism of mutual wake-up between producers and

consumers, so that the security and efficiency of

communication are guaranteed. At last, we test and analyze the

performance of channel in different numbers of producers and

consumers, draw the conclusion that when the number of

producers and consumers increases, the channel performance

will decrease. This study provides an effective communication

guarantee for the implementation of the coroutine on SW26010

processor, provides an efficient communication interface for

the development of upper application, and improves the

efficiency of program execution, and explores the

communication capability of SW26010 processor.

CONFLICT OF INTEREST: There is no conflict of interest

in the paper.

REFERENCES

[1] Fu, H. , Liao, J. , Yang, J. , Wang, L. , Song, Z. , & Huang,

X. , et al. (2016). The sunway taihulight supercomputer:

system and applications. Science China Information

Sciences, 59(7).

[2] Duan, X. , Xu, K. , Chan, Y. , Hundt, C. , Schmidt, B. , &

Balaji, P. , et al. (2017). S-Aligner: Ultrascalable Read

http://ijeeemi.poltekkesdepkes-sby.ac.id/index.php/ijeeemi

 Indonesian Journal of Electronics, Electromedical, and Medical Informatics (IJEEEMI)

 Vol. 3, No. 1, February 2021, pp. 15-20

DOI: 10. 35882/ijeeemi.v3i1.3 ISSN: 2656-8624

Accredited by Ministry of Research and Technology /National Research and Innovation Agency

Decree No: 200/M/KPT/2020

Journal homepage: http://ijeeemi.poltekkesdepkes-sby.ac.id/index.php/ijeeemi 20

Mapping on Sunway Taihu Light. IEEE International

Conference on Cluster Computing. IEEE.

[3] Wang, X. , Liu, W. , Xue, W. , & Wu, L. . (2018).

swSpTRSV: a fast sparse triangular solve with sparse

level tile layout on sunway architectures. Acm Sigplan

Symposium. ACM.

[4] Fang, J. , Fu, H. , Zhao, W. , Chen, B. , & Yang, G. .

(2017). swDNN: A Library for Accelerating Deep

Learning Applications on Sunway TaihuLight. 2017

IEEE International Parallel and Distributed Processing

Symposium (IPDPS). IEEE.

[5] Bailes, P. A. . (1985). A low-cost implementation of

coroutines for c. Software Practice & Experience, 15(4),

379-395.

[6] Pauli, W. , & Soffa, M. L. . (1980). Coroutine behaviour

and implementation. Software Practice & Experience,

10(3), 189-204.

[7] Hui-Ba, L. I. , Yu-Xing, P. , & Xi-Cheng, L. U. . (2008).

A programming pattern for distributed systems. computer

engineering & science.

[8] Xu, X. , & Li, G. . (2012). Research on coroutine-based

process interaction simulation mechanism in c++.

[9] Zhangdun, T. , Shuyu, C. , & Yao, L. . (2012). Research

and implementation of high-performance ring buffer.

computer engineering, 38(8), 228-231.

[10] Feldman, S. , & Dechev, D. . (2015). A wait-free multi-

producer multi-consumer ring buffer. Acm Sigapp

Applied Computing Review, 15(3), 59-71.

[11] Bergauer, H. , Jeitler, M. , Kulka, Z. , Mikulec, I. ,

Neuhofer, G. , & Padrta, M. , et al. (1996). A 1-ghz flash-

adc module for the tagging system of the cp-violation

experiment na48. Nuclear Instruments & Methods in

Physics Research, 373(2), 213-222.

[12] He, Z. . (2012). On algorithm design and programming

model for multi-threaded computing. Dissertations &

Theses Gradworks.

[13] Michael, M. M. . (2003). CAS-Based Lock-Free

Algorithm for Shared Deques. Euro-par Parallel

Processing, International Euro-par Conference,

Klagenfurt, Austria, August. DBLP.

http://ijeeemi.poltekkesdepkes-sby.ac.id/index.php/ijeeemi

