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ABSTRACT One of the metabolic diseases with a rising prevalence in Indonesia is Type 2 Diabetes Mellitus (T2DM). A 

collective effort from various sectors is required to seek solutions for T2DM. The proteomic approach, which focuses on 

proteins and their interactions related to T2DM, can be used to understand this condition. This research aims to model protein 

interactions associated with T2DM using a network graph, enabling the identification of key proteins that have the potential 

to serve as therapeutic targets or T2DM biomarkers. The graph analysis method used in this study involved four centrality 

measures: degree centrality, closeness centrality, betweenness centrality, and eigenvector centrality. The validation method 

used to confirm the identified proteins is gene set enrichment analysis. The results obtained from the graph analysis using four 

centrality measures highlighted that seven out of 27 T2DM-related proteins are key proteins; these are: ABCC8, HNF4A, 

INS, KCNJ11, NEUROD1, PDX1, and SLC30A8. This study concludes that graph analysis on the interaction graph of T2DM-

related proteins successfully identified key proteins that could potentially serve as T2DM biomarkers. Further medical 

investigation is imperative because computational identification alone is not sufficient to confirm the validity of the findings 

in this study. 

INDEX TERMS Enrichment analysis, graph analysis, protein-protein interactions, type 2 diabetes mellitus.

I. INTRODUCTION 

As a country in transition from a developing state to a 

developed one, Indonesia faces a multitude of health 

challenges among its population [1]. One of the most pressing 

health issues is Type 2 Diabetes Mellitus (T2DM), with 

Indonesia ranking among the countries with the highest 

prevalence globally [2], [3]. Data reveals an alarming 8.2% 

increase in the prevalence of T2DM in Indonesia up to 2023, 

surpassing the average prevalence observed in middle and 

lower-income countries [4]. Conversely, only one-third of the 

total T2DM patients in Indonesia receive proper treatment [4]. 

Addressing this issue demands a concerted effort from diverse 

stakeholders, involving multiple facets. One pivotal step 

forward is to conduct an in-depth investigation into the 

mechanisms underlying T2DM within the human body. 

Type 2 Diabetes Mellitus (T2DM) is a metabolic disorder 

characterized by multiple phenotypes, including 

hyperglycemia, insulin resistance, and various comorbidities 

[5]. As a chronic and progressive disease, understanding the 

biological mechanisms underlying the development of T2DM 

is crucial [6]. Investigating these mechanisms often involves 

the study of proteins known to play a role in T2DM 

pathogenesis. 

Protein-protein interaction analysis is a branch of 

proteomics that focuses on elucidating interactions between 

different proteins [7]. The STRING database compiles known 

protein interactions from various sources, such as text mining, 

co-expression matrix queries, metabolic pathway data, and 

other genomic resources [8]. These interactions among 

proteins associated with a specific disease can be represented 

as a graph network, a widely used approach for discovery 

analysis. Additionally, beyond proteomics research, 

methodologies like network pharmacology utilize graph or 
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network theory to model interactions between drugs and 

biological systems [9]. 

Previous studies have employed the modeling of biological 

systems through interaction graphs, particularly in the context 

of protein-protein interactions. For instance, study by [10] 

employed this approach to model protein-protein interactions 

in the context of the infectious disease COVID-19, with the 

goal of identifying potential drug candidates. Similarly, study 

by [11] applied this methodology to group interacting proteins 

in Parkinson's disease, shedding light on the disease's 

underlying biological mechanisms. Study by [12] delved into 

understanding the patterns exhibited by antibiotic-resistant 

genes, while study by [13] combined graph analysis with 

graph-based machine learning convolutional neural networks 

to detect protein complexes. These diverse literature examples 

highlight the effectiveness of utilizing graph networks to 

model various interactions, particularly those between 

proteins, in advancing our understanding of disease 

mechanisms. 

Our study aims to extend this approach to model the 

interactions of various proteins associated with Type 2 

Diabetes Mellitus (T2DM) through interaction graph 

networks. Notably, there is a paucity of proteomic 

investigations that explore T2DM from the perspective of 

graph theory and analysis. The resultant graph is subjected to 

rigorous analysis, with the primary objective of identifying 

central proteins that potentially contribute to the onset or 

progression of T2DM.  

In addition to graph analysis, this study also conducted gene 

set enrichment analysis (GSEA) on the key proteins identified 

through the graph analysis. GSEA serves the purpose of 

delving deeper into the mechanisms affected, particularly 

where these key proteins exert a significant influence. 

Broadly, GSEA can be defined as a series of analyses aimed 

at discerning which terms related to various biological 

mechanisms (including pathways, biological processes, and 

molecular functions) are enriched among a given set of genes 

or proteins [14]. This approach is widely employed in 

proteomics studies as it enhances insights pertaining to the 

biological mechanisms involving the proteins of interest [15]. 

The primary objective of this study is to identify pivotal 

proteins in the context of Type 2 Diabetes Mellitus (T2DM) 

using graph analysis. These identified key proteins hold the 

potential to serve as candidate biomarkers or therapeutic 

targets. The outcomes of this research are expected to 

contribute significantly to the prevention and treatment of 

T2DM, both within Indonesia and globally. The identified key 

proteins can serve as a foundational reference for further 

medical research endeavors concerning T2DM. 

This paper is structured into four main sections. Following 

the introduction presented above, the materials and methods 

section provides a comprehensive explanation of data 

acquisition, data sources, the construction of interaction 

graphs, graph analysis procedures, and the employed GSEA 

methodology. Subsequently, the results and discussions 

section presents the findings at each stage of the methodology, 

accompanied by an in-depth discussion and interpretation of 

these results. Finally, the paper concludes with a summarizing 

section that encapsulates the key insights drawn from this 

study. 

The research conducted has made significant contributions 

to the understanding of Type 2 Diabetes Mellitus (T2DM). 

Firstly, it has identified key proteins associated with T2DM, 

suggesting their potential utility as biomarkers. This finding 

not only advances our knowledge of the disease but also offers 

a potential avenue for the development of diagnostic tools and 

targeted therapies. Additionally, the research underscores the 

importance of graph interaction modeling and analysis as a 

promising approach within the field of proteomics. By using 

network graphs to analyze protein interactions related to 

T2DM, this study has demonstrated the power of this method 

in unraveling the complex relationships within biological 

systems. This highlights the potential for graph-based 

approaches to play a pivotal role in future research and the 

development of innovative solutions in the study of metabolic 

diseases and beyond.  

 
II. MATERIALS AND METODS 

A. DATA ACQUISITIONS 

The data required for this study encompass two main 

components: protein data pertaining to T2DM and information 

regarding interactions between proteins. Protein data linked to 

T2DM was sourced from The Human Protein Atlas database 

[16], employing the keyword "type 2 diabetes mellitus" for 

querying purposes. Subsequently, all proteins retrieved from 

the database were compiled for analysis. 

Following the compilation of T2DM-related proteins, the 

next step involved the acquisition of protein interaction data 

from the STRING database [8]. The query executed in 

STRING consisted of the set of T2DM-related proteins 

obtained in the previous step. The interaction data provided by 

the STRING database was then retrieved for subsequent 

analysis. 

B. DATA PREPARATIONS 

The collected data then undergoes a preparation phase, 

which includes the initial steps for constructing the interaction 

graph. The first task involves data selection, wherein 

extraneous attributes are filtered out from the downloaded 

interaction data. This step is essential as protein-protein 

interaction graphs only necessitate the source node and target 

node information. 

Following the removal of unnecessary attributes, a comma-

separated value (CSV) file is generated, containing the 

relevant source node and target node information. In this 

context, all the T2DM-related proteins gathered during data 
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acquisition serve as source nodes. Conversely, the target nodes 

consist of all proteins that interact with the source nodes within 

the set of T2DM-related proteins. 

C. GRAPH CONSTRUCTION 

The construction of the graph is executed using the interaction 

data that was previously prepared. The resulting graph takes 

the form of an undirected graph, as this accurately represents 

the bidirectional nature of protein interactions [8]. Each node 

within the graph corresponds to a protein related to T2DM, 

and the presence of an edge connecting two nodes signifies an 

interaction between the respective proteins.  

D. GRAPH ANALYSIS 

The constructed graph is subsequently subjected to analysis to 

identify key proteins. This analysis involves the computation 

of centrality measurements, which are utilized to quantify the 

importance of nodes within a graph or network [17]. The 

values of these centrality measures in graphs modeling 

interactions between proteins associated with T2DM are 

instrumental in ranking the significance of proteins within the 

biological mechanism of T2DM. 

In this study, four centrality measures are employed: degree 

centrality, closeness centrality, betweenness centrality, and 

eigenvector centrality. The equations used to calculate these 

four centrality measures was adopted from the work of [18]. 

Each centrality measure carries its own unique meaning and 

interpretation concerning the protein-protein interaction 

graph. 

1) DEGREE CENTRALITY 

Degree centrality serves as a metric for assessing the 

significance of a node within a graph, primarily determined by 

the quantity of edges linking to that node. Essentially, it 

quantifies the extent to which a node is intricately linked to 

other nodes within the network [19]. Degree centrality stands 

out as a frequently employed centrality metric in network 

analysis, proving especially valuable when pinpointing nodes 

with extensive connections in a network [20]. Equation (1) 

from [18] is used for measuring degree centrality of node i 

from a graph.  

𝐶𝑑(𝑖) =
∑ 𝐴𝑖𝑗

𝑁
𝑗=1

𝑁−1
 (1) 

where 𝐴𝑖𝑗 denotes the adjacent link between nodess i and node 

j and N is the total number of nodes. 

Within protein-protein interaction graphs, degree centrality 

becomes a valuable tool for detecting proteins that exhibit 

extensive connections with other proteins in the network. 

These exceptionally connected proteins are commonly 

denoted as "hubs" and are believed to assume pivotal roles 

within the network. For instance, hubs may participate in the 

regulation of multiple pathways or function as connectors, 

linking disparate sections of the network togethers. 

2) CLOSENESS CENTRALITY 

Closeness centrality represents a metric that gauges the speed 

at which information can travel through a specific node to 

reach other nodes within a graph. It quantifies the degree of 

brevity in the shortest paths from a node to all other nodes 

present in the graoh. The closer a node is in terms of its 

proximity to all other nodes, the more elevated its closeness 

centrality rating. Closeness centrality holds particular 

relevance in signaling networks and frequently emerges as a 

crucial parameter when seeking potential key proteins [21]. 

Equation (2) from [18] is used for measuring closeness 

centrality of node i. 

𝐶𝑐(𝑖) =
∑ 𝑑𝐺(𝑖,𝑘)

𝑁−1
 (2) 

where 𝑑𝐺(𝑖, 𝑘) denotes the shortest path (geodesic distance) 

from nodes i to nodes k. 

3) BETWEENNESS CENTRALITY 

Betweenness centrality serves as a metric for assessing 

centrality within a graph, primarily relying on the concept of 

shortest paths. It quantifies the degree to which a vertex acts 

as a bridge or intermediary along paths connecting other 

vertices. Vertices with high betweenness centrality may exert 

substantial influence within a graph due to their control over 

the flow of information between other nodes. Additionally, 

their removal from the graph can disrupt communications 

between other vertices to the greatest extent, as they lie on the 

largest number of paths through which messages travel. 

Equation (3) from [18] is used for measuring betweenness 

centrality of node i. 

𝐶𝑏(𝑖) =
∑ 𝜎𝑗𝑘(𝑖)𝑗,𝑘∈𝑉 

𝜎𝑗𝑘
 (3) 

where 𝜎𝑗𝑘(𝑖) is the total number of pairs (j,k) with 𝑗 ≠ 𝑘 ≠ 𝑖 
and between nodes j and k there exists a path passing through 

nodes i and 𝜎𝑗𝑘 is the total number of paths from nodes j to 

nodes k. 

4) EIGENVECTOR CENTRALITY 

In the realm of graph theory, eigenvector centrality stands as a 

metric to gauge a node's influence within a graph. It allocates 

relative scores to all nodes in the graph, operating under the 

premise that connections to nodes with higher scores exert a 

greater impact on the score of the node in question than 

connections to nodes with lower scores. A heightened 

eigenvector score signifies that a node is linked to numerous 

other nodes that, in turn, possess elevated scores themselves. 

This concept reflects the idea that a node's centrality is 

influenced by both the quantity and quality of its connections 

within the graph. Equation (4) from [18] is used for measuring 

eigenvector centrality of node i. 

𝑒𝑖 =
1

𝜆𝑚𝑎𝑥
∑ 𝐴𝑖𝑗𝑥𝑗, 𝑓𝑜𝑟 𝑖 = 1,2,3, … , 𝑁.𝑁

𝑗=1  (4) 
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where (𝑥1, 𝑥2, … , 𝑥𝑁)𝑡 denotes the eigenvector of the largest 

eigenvalue 𝜆𝑚𝑎𝑥 from the adjacency matrix. It is the weighted 

average of the scores 𝑥𝑖 of all nodes connected to nodes i.  

E. KEY PROTEINS IDENTIFICATION 

The identification of key proteins within the interaction graph, 

comprising various proteins associated with T2DM, relies on 

the four previously calculated centrality measures. This 

determination involves ranking each node based on its 

corresponding centrality value. Beyond ranking, sub-graphs 

are also constructed, comprising proteins that attain centrality 

values exceeding the some thresholds. 

F. GENE SET ENRICHMENT ANALYSIS 

GSEA represents a pivotal analytical step in our quest to 

unravel the intricate web of biological intricacies within 

T2DM. In this process, we meticulously scrutinized a select 

cohort of proteins that emerged as conspicuously significant 

in prior steps. The profound essence of GSEA lies in its 

capacity to unveil the profound intricacies of the biological 

tapestry underpinning T2DM, delving deep into the biological 

processes, molecular mechanisms, and pathways that 

orchestrate the disease's progression [22]. Through GSEA, we 

transcend mere identification, striving to elucidate the very 

essence of these protein’s roles in the larger biological 

narrative of T2DM, offering invaluable insights that may 

illuminate novel therapeutic avenues and foster a deeper 

understanding of this complex ailment. 

GSEA was conducted using Enrichr [23]. Significant 

protein sets from the previous stage were input to Enrichr to 

obtain data related to biological processes, molecular 

mechanisms, and pathways from the queried protein sets. 

After the three types of data were obtained, visualization of the 

three types of data was carried out using CytoScape software 

[24]. 

 
III. RESULTS 

A. DATA ACQUISITIONS AND PREPARATIONS 

Data acquisition on THPA using the keyword "type 2 diabetes 

mellitus" resulted in a set of 27 T2DM-related proteins. These 

proteins are ABCC8, C4A, CAPN10, GFPT2, HNF4A, 

HSPA4, IDE, IL6, INS, KCNJ11, LEP, LRP5, MT-ND1, 

NEUROD1, OAS1, PDX1, PEA15, PPARGC1B, PTPRN, 

PTPRN2, RRAD, SH2B3, SHBG, SLC2A3, SLC30A8, 

WFS1, ZFP57. 

The set of proteins is then queried to the STRING database 

to get the interaction data. The results obtained interaction data 

between 25 proteins out of 27 proteins. Two proteins that were 

not found were MT-ND1 and PEA15. The data obtained from 

STRING was then downloaded for the next stages. The 

obtained data are necessary for graph construction and 

analysis. 

B. GRAPH CONSTRUCTION AND ANALYSIS 

The interaction graph between proteins is transformed into an 

undirected graph, resulting in a graph comprising a total of 25 

nodes and 61 edges. Each node corresponds to an individual 

protein related to T2DM, and each edge signifies an 

interaction between two proteins. The decision to represent the 

graph as undirected stems from the bidirectional nature of 

these protein interactions, ensuring a more accurate modeling 

approach. The presence of 61 edges indicates the existence of 

61 interaction relationships among the 25 proteins associated 

with T2DM. FIGURE 1 provides a visual representation of the 

graph derived from the interactions between T2DM-related 

proteins. The constructed graph was analyzed and the results 

are presented in subsequent sub-section. 

 

 
FIGURE 1. Construction of protein-protein interaction graph resulted 

from visualization tools in STRING. 

C. KEY PROTEINS IDENTIFICATION 

The identification of key proteins is based on the centrality 

values computed for each protein. The initial step involves 

ranking the proteins in descending order according to their 

centrality values. The calculated results for degree centrality, 

closeness centrality, betweenness centrality, and eigenvector 

centrality for each protein are presented in TABLE 1. 

To determine the key proteins, ranking is performed, 

starting with degree centrality. The top ten proteins with the 

highest degree centrality are identified as follows: INS, 

ABCC8, SLC30A8, NEUROD1, HNF4A, KCNJ11, IL6, 

PDX1, WFS1, and CAPN10. Creating a subgraph from these 

ten proteins with the highest degree centrality yields a graph 

comprising 10 nodes and 32 edges. The presence of 32 edges 

within the subgraph indicates that there are 32 interactions 

occurring among these ten proteins with the highest degree 

centrality. The visual representation of this subgraph is 

presented in FIGURE 2. 

The protein with the highest degree centrality is INS or 

Insulin. If a protein has a high degree centrality, it means that 
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many proteins interact with it, making it a vital protein in a 

protein interaction graph. Insulin is known to have an 

important role in T2DM disease. Cells in T2DM patients tend 

to be resistant to insulin even though insulin plays a role in 

regulating blood glucose levels [25]. This makes insulin the 

most vital protein when talking about T2DM. This study 

successfully confirmed the important role of insulin in T2DM 

through the perspective of graph analysis. The next ranking is 

based on closeness centrality. The ten proteins with the highest 

closeness centrality values are INS, ABCC8, HNF4A, 

SLC30A8, IL6, NEUROD1, KCNJ11, PDX1, WFS1, and 

CAPN10. The sub-set of proteins obtained is the same as when 

identifying using degree centrality, but there are differences in 

sequence compared to the sequence in degree centrality. 
 

TABLE 1 
Centrality measures of each protein 

Protein/Gene 
Degree 

Centrality 

Closeness 

Centrality 

Betweenness 

Centrality 

Eigenvector 

Centrality 

ABCC8 0.18033 0.02500 49.33333 0.35367 

WFS1 0.09836 0.02174 0.00000 0.25633 

IDE 0.03279 0.02000 0.00000 0.10294 

NEUROD1 0.13115 0.02273 3.13333 0.31365 

PTPRN 0.08197 0.02174 47.06667 0.16242 

HNF4A 0.13115 0.02439 35.33333 0.23178 

KCNJ11 0.13115 0.02273 16.26667 0.29674 

PDX1 0.11475 0.02222 6.66667 0.26881 

CAPN10 0.09836 0.02174 0.00000 0.25633 

INS 0.31148 0.03448 324.93333 0.44241 

SLC30A8 0.14754 0.02381 13.93333 0.31939 

ZFP57 0.03279 0.01613 0.00000 0.08411 

C4A 0.01639 0.01538 0.00000 0.01743 

IL6 0.13115 0.02381 135.66667 0.13481 

GFPT2 0.01639 0.01923 0.00000 0.05721 

LRP5 0.03279 0.01961 0.00000 0.08718 

HSPA4 0.04918 0.02128 0.00000 0.10462 

PPARGC1B 0.03279 0.01961 0.00000 0.08718 

LEP 0.06557 0.02174 3.66667 0.12108 

SHBG 0.04918 0.02128 0.00000 0.09030 

RRAD 0.01639 0.01538 0.00000 0.01743 

OAS1 0.01639 0.01538 0.00000 0.01743 

SLC2A3 0.01639 0.01923 0.00000 0.05721 

PTPRN2 0.04918 0.02041 0.00000 0.11952 

SH2B3 0.01639 0.01449 0.00000 0.02100 

 

The subgraph formed from the ten proteins with the highest 

closeness centrality has a total of 10 nodes and a total of 27 

edges. The same subgraph as the subgraph from the ranking 

results using degree centrality. Visualization of the subgraph 

formed from the ten proteins with the highest closeness 

centrality is presented in FIGURE 3. 

Insulin emerges once again as the most crucial protein, as 

indicated by its high closeness centrality. This implies that 

insulin possesses the ability to efficiently transmit interaction 

information between proteins. Closeness centrality measures 

how rapidly a protein can establish connections with all other 

proteins in the graph, taking into account the shortest path 

length [26]. 

Subsequently, the identification of key proteins is 

conducted based on betweenness centrality values. In the 

protein-protein interaction graph, a protein can obtain a 

betweenness centrality value of zero, signifying the absence of 

any shortest paths passing through that particular protein. 

Among the T2DM-related proteins, those with non-zero 

betweenness centrality values include INS, IL6, ABCC8, 

PTPRN, HNF4A, KCNJ11, SLC30A8, PDX1, LEP, and 

NEUROD1. 

Ten proteins exhibit non-null betweenness centrality 

values. The subgraph formed from these ten proteins in the 

protein-protein interaction network consists of ten nodes and 

27 edges, as visualized in FIGURE 4. Identified key proteins 

based on betweenness centrality were subjected for GSEA and 

the results are presented in subsequent sub-section. 

The identification of key proteins was further refined based 

on eigenvector centrality values. The top ten proteins with the 

highest eigenvector centrality values are INS, ABCC8, 

SLC30A8, NEUROD1, KCNJ11, PDX1, WFS1, CAPN10, 

HNF4A, and PTPRN. The interaction subgraph resulting from 

these ten proteins also comprises ten nodes, interconnected by 

33 edges, as depicted in FIGURE 5. 

Among these centrality measures, seven proteins—

ABCC8, HNF4A, INS, KCNJ11, NEUROD1, PDX1, and 

SLC30A8—are consistently selected. Additionally, CAPN10, 

IL6, and WFS1 are chosen by all centrality measures except 

betweenness centrality, while PTPRN is exclusively identified 

by betweenness centrality and eigenvector centrality. The 

overlap of protein selection by each centrality measure is 

visually represented in a Venn diagram, presented as FIGURE 

6. 

 

FIGURE 2. Sub-graph that models the interactions of ten proteins with 
highest degree centrality. 
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FIGURE 3. Sub-graph that models the interactions of ten proteins with 
highest closeness centrality. 

 

 

FIGURE 4. Sub-graph that models the interactions all proteins with non-
zero betweenness centrality. 

 

FIGURE 5. Sub-graph that models the interactions of ten proteins with 
highest eigenvector centrality. 

D. GENE SET ENRICHMENT ANALYSIS 

GSEA is conducted on all proteins that possess non-null 

betweenness centrality values, namely INS, IL6, ABCC8, 

PTPRN, HNF4A, KCNJ11, SLC30A8, PDX1, LEP, and 

NEUROD1. This approach is chosen due to the presence of 

proteins with betweenness centrality values equal to zero, 

making protein selection more straightforward. Moreover, 

proteins with non-zero betweenness centrality play a 

significant role in biological mechanisms, acting as hub 

proteins that facilitate interactions among two or more groups 

of proteins [27]. 

 
FIGURE 6. Venn diagram displaying proteins selected by all centrality 
measures. 

 

1) KEGG PATHWAY 

The first aspect under examination pertains to metabolic 

pathways. A metabolic pathway is a complex network of 

molecular interactions and reactions occurring within a cell or 

organism, serving a specific biological function [28]. Among 

the ten proteins with non-null betweenness centrality, the 

metabolic pathway most enriched is maturity onset diabetes of 

the young (MODY). This finding suggests that the key 

proteins identified in this study collectively contribute to the 

metabolic pathway associated with MODY. MODY 

represents a distinct type of diabetes characterized by gene 

mutations and typically manifests before the age of 25 [29]. 

While it differs from T2DM, MODY is frequently 

misdiagnosed as such. The study results indicate shared 

underlying mechanisms between the two conditions, 

warranting further clinical investigation. The bar chart in 

FIGURE 7 presents the top ten enriched metabolic pathways, 

sorted by p-value, corresponding to the ten proteins mentioned 

earlier. 

 

 
FIGURE 7. Bar chart of top enriched terms from the KEGG_2021_Human 
gene set library. The top 10 enriched terms for the input gene set are 
displayed based on the -log10(p-value), with the actual p-value shown 
next to each term. The term at the top has the most significant overlap 
with the input query gene set. 

 

http://ijeeemi.poltekkesdepkes-sby.ac.id/index.php/ijeeemi


Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics 
Multidisciplinary : Rapid Review : Open Access Journal                            Vol. 5, No. 4, November 2023, pp.201-209   e-ISSN: 2656-8624               

 

Accredited by Ministry of Research and Technology /National Research and Innovation Agency, Indonesia  

Decree No: 200/M/KPT/2020 

Journal homepage: http://ijeeemi.poltekkesdepkes-sby.ac.id/index.php/ijeeemi                                                                                                                    207 

2) BIOLOGICAL PROCESS 

Next, we investigate the biological processes enriched by the 

ten proteins mentioned earlier, with a focus on GO biological 

process terms. GO biological process terms describe a series 

of events within a cell or organism aimed at achieving specific 

biological objectives. For instance, 'cellular respiration' is a 

GO biological process term that outlines the process by which 

cells convert glucose into energy [30]. 

The most enriched GO biological process term is 'peptide 

hormone secretion’. This process involves the release of 

peptide hormones by endocrine cells into the human 

circulatory system [31]. Peptide hormone secretion is 

recognized for its influence on the development of T2DM, as 

certain peptide hormones are co-secreted with insulin, 

facilitating interactions between them [32]. The bar chart in 

FIGURE 8 illustrates the top ten enriched GO biological 

process terms associated with the ten selected proteins related 

to T2DM. 

 

FIGURE 8. Bar chart of top enriched terms from the 
GO_Biological_Process_2023 gene set library. The top 10 enriched terms 
for the input gene set are displayed based on the -log10(p-value), with the 
actual p-value shown next to each term. The term at the top has the most 
significant overlap with the input query gene set. 

 

3) MOLECULAR FUNCTION 

The final aspect of GSEA examined in this study pertains to 

molecular function. The term 'molecular function' denotes a 

specific biochemical function of a protein, such as catalyzing 

a chemical reaction or binding to a particular molecule [33]. 

Understanding the molecular function of a protein is pivotal in 

comprehending its role within the biological mechanism of a 

disease, facilitating the identification of precise candidate 

therapeutic targets. 

The most enriched GO molecular function term is 'receptor 

ligand activity’. This term signifies the function of a gene 

product that interacts with a receptor, initiating a cellular 

response [34]. 'Receptor ligand activity' encompasses a wide 

spectrum of ligand-receptor interactions, including those 

associated with cell signaling, growth factor activity, and 

cytokine activity [35]. The prominence of 'receptor ligand 

activity' among the enriched GO molecular function terms 

suggests that these proteins collectively play a role in 

influencing interactions between various other proteins to 

trigger cellular responses. This finding aligns with the fact that 

one of the phenotypes of T2DM is cellular resistance to 

insulin. FIGURE 9 illustrates the top ten enriched GO 

molecular function terms. 

 

FIGURE 9. Bar chart of top enriched terms from the 
GO_Molecular_Function_2023 gene set library. The top 10 enriched 
terms for the input gene set are displayed based on the -log10(p-value), 
with the actual p-value shown next to each term. The term at the top has 
the most significant overlap with the input query gene set. 

 

IV. DISCUSSIONS 

T2DM as one of the deadly diseases cannot be separated from 

the involvement of various proteins that play a role in the 

biological system that causes the development of this disease. 

This study tries to reveal the role of various proteins involved 

in T2DM from the aspect of interactions between these 

proteins. We modeled the interactions between these proteins 

into the form of interaction graphs so that it can be seen 

whether graph analysis is able to identify key proteins in 

T2DM disease. 

The identification is done using four types of centrality 

measures that are commonly used to determine the priority 

nodes in a graph or network. The four types of degree 

centrality have their own characteristics in determining which 

nodes are more prioritized than other nodes. Ranking based on 

the centrality measures value obtained by each node will 

produce a set of most prioritized proteins in the interaction 

graph that have different characteristics according to the type 

of centrality measures. 

Degree centrality, a measure that quantifies the number of 

interactions between a protein and other proteins, highlights 

insulin as the most crucial protein. While this is not a novel 

revelation, it adds significant value to our modeling, as it can 

be regarded as a true positive. The presence of true positives 

is pivotal in the identification process, as it underscores the 

reliability and accuracy of our model [36]. 

Some key proteins identified through degree centrality 

share similarities with those identified through closeness 

centrality rankings. However, differences exist in the ranking 

order of proteins between these two centrality measures. For 

instance, HNF4A is ranked fifth in terms of having the most 

interactions (degree centrality) but climbs to the third position 
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in terms of its effectiveness in communication and influence 

among proteins (closeness centrality). Closeness centrality, 

which quantifies how efficiently a protein communicates and 

influences other proteins in the interaction graph, also 

positions insulin as the top-ranked protein. This reaffirms the 

significance of insulin as a key true positive in this study. 

Among the centrality measures applied in our graph 

analysis, betweenness centrality holds a unique significance, 

as it can assume a value of zero. In our study, it emerges as the 

most crucial metric for identifying key proteins related to 

T2DM. Notably, we observe an intriguing phenomenon: two 

proteins, PTPRN and LEP, which do not qualify as key 

proteins based on degree centrality or closeness centrality, are, 

nevertheless, identified as key proteins by betweenness 

centrality. This is a noteworthy finding because betweenness 

centrality quantifies a protein's pivotal role in bridging 

interactions between distinct protein clusters. Despite their 

limited number of interactions and comparatively less 

effective transmission of interaction information to other 

proteins, PTPRN and LEP play a critical role as bridges 

between two separate groups of interacting proteins. In 

practical terms, these proteins serve as key elements that, if 

targeted therapeutically, can influence the behavior of the two 

interconnected protein clusters. While they may not be 

explicitly designated as T2DM biomarkers, a study by [37] 

suggests that PTPRN has the potential to be a therapeutic 

target for T2DM patients with comorbid colorectal cancer. 

Another study [38] has linked polymorphisms in the LEP gene 

to an insulin resistance phenotype in a Malaysian population 

of T2DM patients, reinforcing the validity of their 

identification as true positives. 

A noteworthy limitation of this study lies in the absence of 

subsequent in vitro or in vivo validation. The key proteins 

identified in this investigation cannot be unequivocally 

designated as biomarkers for T2DM or as effective therapeutic 

targets. This determination demands rigorous medical and 

clinical evaluation. However, the outcomes of this study hold 

the promise of serving as a critical foundation for the initiation 

of in vitro and in vivo validation processes. This anticipates 

that the validation procedure will be significantly expedited, 

as potential candidates for testing have already been identified 

through this research. 

 
V. CONCLUSIONS 

The aim of this study is to discover key proteins that have 

potentials to serve as T2DM biomarkers. The results showed 

that this study effectively modelled interactions among 

various T2DM-related proteins using interaction graphs. 

Through graph analysis, key proteins associated with T2DM 

were successfully identified. Seven proteins, namely ABCC8, 

HNF4A, INS, KCNJ11, NEUROD1, PDX1, and SLC30A8, 

emerged as the most promising key proteins, as they were 

consistently selected by all four centrality measures employed. 

These seven proteins hold significant potential as targets for 

T2DM drug development, with the potential to enhance 

therapeutic outcomes. 

Furthermore, the analysis of ten proteins exhibiting non-

null betweenness centrality values revealed their collective 

involvement in metabolic pathways, biological processes, and 

molecular functions, all of which displayed significant 

correlations with T2DM. Consequently, it can be inferred that 

this study has effectively identified key proteins associated 

with T2DM through graph analysis. However, computational 

identification alone, as conducted in this study, may not offer 

sufficient evidence to definitively classify the identified 

proteins as biomarkers for T2DM. Nevertheless, it serves as a 

valuable stepping stone for further research. Nevertheless, 

further investigation of these findings, especially from a 

clinical standpoint, is imperative to obtain medical validation. 
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